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1.3.1 Tabulate Values 

 

Apply a unit load at different locations along the member, say at x. And these 

locations, apply statics to compute the value of parameter (reaction, shear, or moment) 

at the specified point. The best way to use this approach is to prepare a table, listing 

unit load at x versus the corresponding value of the parameter calculated at the specific 

point (i.e. Reaction R, Shear V or moment M) and plot the tabulated values so that 

influence line segments can be constructed. 

 
1.3.2 Sign Conventions 
 
Sign convention followed for shear and moment is given below. 

 

 
 

 

1.3.3 Influence Line Equations 
 
Influence line can be constructed by deriving a general mathematical equation to compute 

parameters (e.g. reaction, shear or moment) at a specific point under the effect of moving 

load at a variable position x. 

 

The above discussed both approaches are demonstrated with the help of simple numerical 

examples in the following paragraphs. 

 

1.3.4 Getting Influence Line Equation 

 

An influence line for a given function, such as a reaction, axial force, shear force, or 

bending moment, is a graph that shows the variation of that function at any given point 

on a structure due to the application of a unit load at any point on the structure. 
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1.4 SIMPLY SUPPORTED BEAMS 

1.4.1 Load Categories 

We can consider 5 categories of loads on beams 

1. Concentrated Loads 

a. Single point load 

b. Two point load 

c. Multi point load 

2. udl longer than the beam span 

3. udl shorter than the beam span 

4. Equivalent uniformly distributed load(EUDL) 

 

1.5 CONCENTRATED LOADS 

a) Single Point Load: 

Reactions in a SSB 

External forces like reactions are the easiest force components for which 

influence lines can be sketched easily. 

 
Let us try to get IL for RA  for the beam AB in fig (a).Let a unit load act at P at a 

distance ‘a’ from A. Then RA & RB 

     

                                        
ILD for Internal Shear & Bending moment in a SSB 

Let us investigate the SF & BM at X at a distance ‘x’ from A. Let ‘a’ be the 

coordinate position of a unit load. 

Shear force 

For a < x      
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For a > x      

                               
Bending moment 

For a < x      

                             
For a > x      

                               

 
Examples 
 
1. Construct the influence line for the reaction at support B for the beam of span 10 m. 

The beam structure is shown in Figure below 
 
 
 
 
 

 

Figure : The beam structure 

Solution:  
As discussed earlier, there are two ways this problem can be solved. Both the approaches 

will be demonstrated here. 
 
Tabulate values:  
As shown in the figure, a unit load is places at distance x from support A and the reaction 

value RB is calculated by taking moment with reference to support A. Let us say, if the 

load is placed at 2.5 m. from support A then the reaction RB can be calculated as follows 
(Figure). 
 

Σ MA  = 0 : RB x (10 – 1) x 2.5 = 0 ⇒ RB  = 0.25 
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Figure 1 : The beam structure with unit load 

 
Similarly, the load can be placed at 5.0, 7.5 and 10 m. away from support A and reaction 

RB can be computed and tabulated as given below. 
 
 

x RB 
 

0 0.0 

2.5 0.25  

5.0 0.5  

7.5 0.75 

10 1 
 

Graphical representation of influence line for RB is shown in Figure 37.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Influence line for reaction RB. 

 

Influence Line Equation:  
When the unit load is placed at any location between two supports from support A at 

distance x then the equation for reaction RB can be written as 
 

Σ MA  = 0 : RB x (10 – x) = 0 ⇒ RB  = x/10 

 

The influence line using this equation is shown in Figure 2. 
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2. Construct the influence line for support reaction at B for the given beam as shown in 

below. 
 
 
 
 
 
 
 
 

Figure: The overhang beam structure  
Solution: 

As explained earlier in example 1, here we will use tabulated values and influence line 

equation approach. 
 
Tabulate Values:  
As shown in the figure, a unit load is places at distance x from support A and the reaction 

value RB is calculated by taking moment with reference to support A. Let us say, if the 

load is placed at 2.5 m. from support A then the reaction RB can be calculated as follows. 
 

Σ MA  = 0 : RB x (7.5 – 1) x 2.5 = 0 ⇒ RB  = 0.33 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The beam structure with unit load 

 

Similarly one can place a unit load at distances 5.0 m and 7.5 m from support A and 

compute reaction at B. When the load is placed at 10.0 m from support A, then reaction at 

B can be computed using following equation. 
 

Σ MA  = 0 : RB x (7.5 – 1) x 10.0 = 0 ⇒ RB  = 1.33 

 

Similarly a unit load can be placed at 12.5 and the reaction at B can be computed. The 

values of reaction at B are tabulated as follows. 
 

x RB 
 

0 0.0 

2.5 0.33  

5.0 0.67  

7.5 1.00 

10 1.33 

12.5  1.67 
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Graphical representation of influence line for RB is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Influence for reaction RB. 
 

 

Influence line Equation:  
Applying the moment equation at A (Figure 37.6), 
 

Σ MA  = 0 : RB x (7.5 – 1) x x = 0 ⇒ RB  = x/7.5 

 

The influence line using this equation is shown in Figure 2. 

 

3. Construct the influence line for shearing point C of the beam (Figure 37.8) 

 
 
 
 
 
 

 

Figure: Beam Structure 

 
Solution:  
Tabulated Values: 

As discussed earlier, place a unit load at different location at distance x from support A 

and find the reactions at A and finally computer shear force taking section at C. The shear 

force at C should be carefully computed when unit load is placed before point C (Figure 

1) and after point C (Figure 2). The resultant values of shear force at C are tabulated as 

follows. 
 
 
 
 
 
 
 
 
 

 

Figure 1: The beam structure – a unit load before section 
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Figure 2  : The beam structure - a unit load before section 
 
 
 

X Vc 
 

0 0.0 

2.5 -0.16  
5.0 -0.33 
7.5(-) -0.5 

7.5(+) 0.5 

10 0.33 

12.5 0.16  

15.0 0  
 

Graphical representation of influence line for Vc is shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Influence line for shear point C 

 

Influence line equation:  
In this case, we need to determine two equations as the unit load position before point C 

(Figure 4) and after point C (Figure 5) will show different shear force sign due to 

discontinuity. The equations are plotted in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Free body diagram – a unit load before section 
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Figure 5: Free body diagram – a unit load after section 

 
Influence Line for Moment:  
Like shear force, we can also construct influence line for moment. 

 

4. Construct the influence line for the moment at point C of the beam shown in 

Figure  
 
 
 
 
 
 
 
 
 

Figure: Beam structure 

 
Solution:  

Tabulated values:  
Place a unit load at different location between two supports and find the support 

reactions. Once the support reactions are computed, take a section at C and compute the 

moment. For example, we place the unit load at x=2.5 m from support A (Figure 1), then 

the support reaction at A will be 0.833 and support reaction B will be 0.167. Taking 

section at C and computation of moment at C can be given by 
 

Σ Mc  = 0 : - Mc + RB x 7.5 - = 0 ⇒ - Mc + 0.167 x 7.5 - = 0 ⇒ Mc = 1.25 
 
 
 
 
 
 
 
 

 

Figure 1: A unit load before section 
 

Similarly, compute the moment M c for difference unit load position in the span. The 

values of Mc are tabulated as follows. 
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X Mc 
 

0 0.0 

2.5 1.25  

5.0 2.5  

7.5 3.75  

10 2.5 

12.5 1.25  

15.0 0  
 

Graphical representation of influence line for Mc is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Influence line for moment at section C 

 

Influence Line Equations:  
There will be two influence line equations for the section before point C and after point 

C. 
 
When the unit load is placed before point C then the moment equation for given Figure 3 

can be given by 
 

Σ Mc  = 0 : Mc  + 1(7.5 –x) – (1-x/15)x7.5 = 0 ⇒ Mc = x/2, where 0 ≤ x ≤ 7.5 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Free body diagram - a unit load before section 

 

When the unit load is placed after point C then the moment equation for given  
Figure 4 can be given by 
 

Σ Mc  = 0 : Mc  – (1-x/15) x 7.5 = 0 ⇒ Mc = 7.5 - x/2, where 7.5 < x ≤ 15.0 
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Figure 4: Free body diagram - a unit load before section 

 

The equations are plotted in Figure 2 

 

 
5. Construct the influence line for the moment at point C of the beam shown in Figure  
 
 
 
 
 
 
 

Figure: Overhang beam structure 

 

Solution:  

Tabulated values:  
Place a unit load at different location between two supports and find the support 

reactions. Once the support reactions are computed, take a section at C and compute the 

moment. For example as shown in Figure 37.20, we place a unit load at 2.5 m from 

support A, then the support reaction at A will be 0.75 and support reaction B will be 0.25. 
 
 
 
 
 
 
 

 

Figure 1: A unit load before section C 

 

Taking section at C and computation of moment at C can be given by 
 

Σ Mc  = 0 : - Mc + RB x 5.0 - = 0 ⇒ - Mc + 0.25 x 5.0  = 0 ⇒ Mc = 1.25 
 

Similarly, compute the moment Mc for difference unit load position in the span. 
 
The values of Mc are tabulated as follows. 
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x Mc 
 

0 0 

2.5 1.25  

5.0 2.5  

7.5 1.25  

10 0 

12.5 -1.25  

15.0 -2.5  
 

Graphical representation of influence line for Mc is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Influence line of moment at section C 

 

Influence Line Equations:  
There will be two influence line equations for the section before point C and after point 

C. 
 
When a unit load is placed before point C then the moment equation for given Figure 3 

can be given by 
 

Σ Mc  = 0 : Mc  + 1(5.0 –x) – (1-x/10)x5.0 = 0 ⇒ Mc = x/2, where 0 ≤ x ≤ 5.0 
 
 
 
 
 
 
 

 

Figure 3: A unit load before section C 

 
When a unit load is placed after point C then the moment equation for given Figure 4 can 

be given by 
 

Σ Mc  = 0 : Mc  – (1-x/10) x 5.0 = 0 ⇒ Mc = 5 - x/2, where 5 < x ≤ 15 
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Figure 4: A unit load after section C 

 
The equations are plotted in Figure 2. 
 

6. A Single rolling load of 100 kN moves on a girder of span 20m 

(a) Construct the influence lines for  

(i) Shear force and (ii) bending moment for a section 5m from the left support.  

(b)  Construct the influence lines for points at which the maximum shears and 

maximum bending moment develop. Determine these maximum values. 

Solution:  

              

 
a) To find maximum shear force and bending moment at 5m from the left support: 

For the ILD for shear,  

IL ordinate to the right of D =    

  

IL ordinate to the left of D =    

For the IL for bending moment, IL ordinate at D =  

 

i. Maximum positive shear force 

By inspection of the ILD for shear force, it is evident that maximum positive 

shear force occurs when the load is placed just to the right of D 

Maximum positive shear force = load x ordinate = 100 x 0.75 =75N 

                                  At D, SFmax + = 75 kN 

 

 



UNIT-III 

SLOPE DEFLECTION METHOD 

 
INTRODUCTION 
 
As pointed out earlier, there are two distinct methods of analysis for statically 
indeterminate structures depending on how equations of equilibrium, load 
displacement and compatibility conditions are satisfied: 1) force method of 
analysis and (2) displacement method of analysis. In the last module, force 
method of analysis was discussed. In this module, the displacement method of 
analysis will be discussed. In the force method of analysis, primary unknowns are 
forces and compatibility of displacements is written in terms of pre-selected 
redundant reactions and flexibility coefficients using force displacement relations. 
Solving these equations, the unknown redundant reactions are evaluated. The 
remaining reactions are obtained from equations of equilibrium.  
As the name itself suggests, in the displacement method of analysis, the primary 
unknowns are displacements. Once the structural model is defined for the 
problem, the unknowns are automatically chosen unlike the force method. Hence 
this method is more suitable for computer implementation. In the displacement 
method of analysis, first equilibrium equations are satisfied. The equilibrium of 
forces is written by expressing the unknown joint displacements in terms of load 
by using load displacement relations. These equilibrium equations are solved for 
unknown joint displacements. In the next step, the unknown reactions are 
computed from compatibility equations using force displacement relations. In 
displacement method, three methods which are closely related to each other will 
be discussed. 
 

1) Slope-Deflection Method   
2) Moment Distribution Method   

 
 

Degrees of freedom 
 
In the displacement method of analysis, primary unknowns are joint 

displacements which are commonly referred to as the degrees of freedom of the 

structure. It is necessary to consider all the independent degrees of freedom 

while writing the equilibrium equations.These degrees of freedom are specified at 

supports, joints and at the free ends. For example, a propped cantilever beam 

(see Fig.14.01a) under the action of load P will undergo only rotation at B if axial 

deformation is neglected. In this case kinematic degree of freedom of the beam 
is only one i.e. θB as shown in the figure. 
 
 
In Fig.14.01b, we have nodes at A,B,C and D. Under the action of lateral loads  
P1, P2      and P3 , this continuous beam deform as shown in the figure. Here axial  
deformations are neglected. For this beam we have five degrees of freedom θA ,θB 

,θC , θD and D as indicated in the figure. In Fig.14.02a, a symmetrical plane  
frame is loaded symmetrically. In this case we have only two degrees of 

freedomθB andθC . Now consider a frame as shown in Fig.14.02b. It has three  



degrees of freedom viz. θB ,θC  and  D  as shown. Under the action of horizontal 
 
and vertical load, the frame will be displaced as shown in the figure. It is 

observed that nodes at B and C undergo rotation and also get displaced 

horizontally by an equal amount. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hence in plane structures, each node can have at the most one linear 

displacement and one rotation. In this module first slope-deflection equations as 

applied to beams and rigid frames will be discussed. 
 
 

Instructional Objectives 
 
After reading this chapter the student will be able to  
1. Calculate kinematic degrees of freedom of continuous beam.  
2. Derive slope-deflection equations for the case beam with unyielding supports.  
3. Differentiate between force method and displacement method of analyses.  
4. State advantages of displacement method of analysis as compared to force 
method of analysis.  
5. Analyse continuous beam using slope-deflection method.  
 

 



Introduction 
 
In this lesson the slope-deflection equations are derived for the case of a beam 
with unyielding supports .In this method, the unknown slopes and deflections at 
nodes are related to the applied loading on the structure. As introduced earlier, 
the slope-deflection method can be used to analyze statically determinate and 
indeterminate beams and frames. In this method it is assumed that all 
deformations are due to bending only. In other words deformations due to axial 
forces are neglected. As discussed earlier in the force method of analysis 
compatibility equations are written in terms of unknown reactions. It must be 
noted that all the unknown reactions appear in each of the compatibility 
equations making it difficult to solve resulting equations. The slope-deflection 
equations are not that lengthy in comparison.  
The slope-deflection method was originally developed by Heinrich Manderla and 

Otto Mohr for computing secondary stresses in trusses. The method as used 

today was presented by G.A.Maney in 1915 for analyzing rigid jointed structures. 

 

 Slope-Deflection Equations 
 
Consider a typical span of a continuous beam AB as shown in Fig.14.1.The beam 

has constant flexural rigidity EI and is subjected to uniformly distributed loading 
and concentrated loads as shown in the figure. The beam is kinematically 
indeterminate to second degree. In this lesson, the slope-deflection equations 

are derived for the simplest case i.e. for the case of continuous beams with 
unyielding supports. In the next lesson, the support settlements are included in 

the slope-deflection equations. 
 
 
 
 
 
 
 
 
 
 
 
For this problem, it is required to derive relation between the joint end moments 

M AB and M BA in terms of joint rotations θA and θB and loads acting on the  
beam .Two subscripts are used to denote end moments. For example, end 

moments MAB denote moment acting at joint A of the member AB. Rotations of the 

tangent to the elastic curve are denoted by one subscript. Thus, θA denotes  
the rotation of the tangent to the elastic curve at A. The following sign 

conventions are used in the slope-deflection equations (1) Moments acting at the 
ends of the member in counterclockwise direction are taken to be positive. (2) 
The rotation of the tangent to the elastic curve is taken to be positive when the 

tangent to the elastic curve has rotated in the counterclockwise direction from its 
original direction. The slope-deflection equations are derived by superimposing 
the end moments developed due to (1) applied loads (2) rotation θA (3)  
rotationθB . This is shown in Fig.14.2 (a)-(c). In Fig. 14.2(b) a kinematically  
determinate structure is obtained. This condition is obtained by modifying the 



support conditions to fixed so that the unknown joint rotations become zero. The 

structure shown in Fig.14.2 (b) is known as kinematically determinate structure or 

restrained structure. For this case, the end moments are denoted by M AB
F and M BA

F . 

The fixed end moments are evaluated by force–method of analysis as discussed 

in the previous module. For example for fixed- fixed beam subjected to uniformly 

distributed load, the fixed-end moments are shown in Fig.14.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

The fixed end moments are required for various load cases. For ease of 

calculations, fixed end forces for various load cases are given at the end of this 

lesson. In the actual structure end A rotates by θA and end B rotates by θB . Now  
it is required to derive a relation relating θA and θB with the end moments M ′AB and 

M ′BA . Towards this end, now consider a simply supported beam acted by 

moment M AB′ at A as shown in Fig. 14.4. The end moment M AB′ deflects the 

beam as shown in the figure. The rotations θA′and θB′are calculated from 

moment-area theorem. 
 

   ′  
 

θA′ = 
M AB L  

(14.1a) 
 

3EI 
 

    

   ′  
 

θB′ = − 
M AB L 

(14.1b) 
 

6EI  

    
 

 

Now a similar relation may be derived if only M BA′is acting at end B (see Fig. 

14.4). 
  ′    

 

θB′′ = 
M BA L  

and (14.2a) 
 

3EI 
 

     

  ′    
 

θA′′ = − M BA L 
 (14.2b)  

  

  6EI    
 

 
Now combining these two relations, we could relate end moments acting at A 

and B to rotations produced at A and B as (see Fig. 14.2c) 
 



θA = 

M ' L 

− 

M ' L  
 

 AB   BA  

(14.3a) 
 

3EI 6EI  

   
 

 

       ′   ′  
 

  θB =  
M

 BA 

L − 
M

 BA 

L  (14.3b)  

       

6EI 
 

     3EI    
 

′ ′ 

in terms of θA and θB , 

 
 

Solving for M AB and 
M

BA  
 

  
M ′AB = 

  2EI 
(2θA +θB ) (14.4) 

 

    L  

            
 

  ′     2EI      
 

  M
 BA = 

    

(2θB +θA ) (14.5) 
 

    L  

            
 

 
Now writing the equilibrium equation for joint moment at A (see Fig. 14.2). 

 

 M AB = M AB
F
 + M ′AB  (14.6a) 

 

Similarly writing equilibrium equation for joint B  
 

 F  ′  

(14.6b) 

 

     

 
M

 BA 

=
 

M
 BA 

+
 

M
 BA  

 

Substituting the value of ′ equation (14.4) in equation (14.6a) one  

M AB from 
 

obtains,      
 

 
M AB = M AB

F
 + 

2EI 
(2θA +θB ) (14.7a) 

 

 
L  

     
 

 

Similarly substituting 

′    
 

M BA from equation (14.6b) in equation (14.6b) one obtains, 
 

 
M BA = M BA

F
 + 

2EI 
(2θB +θA ) (14.7b) 

 

 
L  

    
 

 
Sometimes one end is referred to as near end and the other end as the far end.  
In that case, the above equation may be stated as the internal moment at the 

near end of the span is equal to the fixed end moment at the near end due to 

external loads plus 
2

L
EI

 times the sum of twice the slope at the near end and the 
 
slope at the far end. The above two equations (14.7a) and (14.7b) simply 

referred to as slope–deflection equations. The slope-deflection equation is 

nothing but a load displacement relationship. 
 
 
 
 
 
 
 



 
Application of Slope-Deflection Equations to Statically Indeterminate 

Beams.  
The procedure is the same whether it is applied to beams or frames. It may be 

summarized as follows:  
1. Identify all kinematic degrees of freedom for the given problem. This can 

be done by drawing the deflection shape of the structure. All degrees of 
freedom are treated as unknowns in slope-deflection method.  

2. Determine the fixed end moments at each end of the span to applied load. 
The table given at the end of this lesson may be used for this purpose.  

3. Express all internal end moments in terms of fixed end moments and near 
end, and far end joint rotations by slope-deflection equations.  

4. Write down one equilibrium equation for each unknown joint rotation. For 
example, at a support in a continuous beam, the sum of all moments 
corresponding to an unknown joint rotation at that support must be zero.  
Write down as many equilibrium equations as there are unknown joint 
rotations.  

5. Solve the above set of equilibrium equations for joint rotations.  
6. Now substituting these joint rotations in the slope-deflection equations 

evaluate the end moments.  
7. Determine all rotations.  

 
Example  
 
A continuous beam ABC is carrying uniformly distributed load of 2 kN/m in 

addition to a concentrated load of 20 kN as shown in Fig.14.5a. Draw bending 

moment and shear force diagrams. Assume EI to be constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a). Degrees of freedom  
It is observed that the continuous beam is kinematically indeterminate to first 

degree as only one joint rotation θB is unknown. The deflected shape /elastic 
 



curve of the beam is drawn in Fig.14.5b in order to identify degrees of freedom.  
By fixing the support or restraining the support B against rotation, the fixed-fixed 

beams area obtained as shown in Fig.14.5c. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b). Fixed end moments M AB
F
 , M BA

F
 , M BC

F
  and M CB

F
  are calculated referring to the 

 
Fig. 14. and following the sign conventions that counterclockwise moments are 

positive. 

M 
F
 = 2 × 6 

2
 + 20 × 3 ×3

2
 = 21 kN.m 

 

AB  12 6
2
  

 

M BA
F
 = −21 kN.m  

 

MBC
F
 = 4 ×4

2
 =5.33 kN.m 

 

MCB
F
 

 12   
 

= −5.33 kN.m (1) 
 

 

(c) Slope-deflection equations  
Since ends A and C are fixed, the rotation at the fixed supports is zero, θA =θC = 

0 . Only one non-zero rotation is to be evaluated for this problem. Now,  
write slope-deflection equations for span AB and BC.  

M AB = M AB
F
 + 

2EI
l (2θA +θB ) 

 



M AB = 21 + 
2EI

 θB (2) 
 

 6    
 

M BA = −21 + 2EI (2θB +θA )  
 

 l   
 

M BA = −21 + 
4EI 

θB (3) 
 

6 
 

 

    
 

M BC = 5.33 + EIθB (4) 
 

MCB = −5.33 + 0.5EIθB (5) 
 

 

(d) Equilibrium equations  
In the above four equations (2-5), the member end moments are expressed in terms 

of unknown rotation θB . Now, the required equation to solve for the rotation  
θB is the moment equilibrium equation at support B. The free body diagram of  
support B along with the support moments acting on it is shown in Fig. 14.5d. 

For, moment equilibrium at support B , one must have, 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑M B = 0    M BA + M BC = 0 (6) 
 

Substituting the values of M BA and M BC in the above equilibrium equation,  
 

− 21 + 
4EI 

θB +5.33 + EIθB = 0 
 

 

  
 

6       
 

⇒1.667θB EI =15.667  
 

 θB = 9.398 ≅ 9.40  (7)  
  

EI 
 

   EI  
 

 
(e) End moments  
After evaluatingθB , substitute it in equations (2-5) to evaluate beam end 

moments. Thus, 
 

 



M
 AB = 21 + 

EI 
θB 

      
 

        
 

   3            
 

M
 AB = 21 + 

EI
 × 

9.398
 = 24.133kN.m  

 

   3      EI   
 

M
 BA = −21 + 

 EI  
 (2θB ) 

  
 

3    
 

             
 

M
 BA = −21 +  EI × 2 ×9.4 = −14.733kN.m  

 

  

EI 
  

   3        
 

M
 BC = 5.333 + 

 9.4  
EI =14.733kN.m 

 
 

 EI  
 

            
 

M
CB = − 5.333 + 9.4 × EI  = −0.63 kN.m (8)  

   

        EI 2    
 

 
(f) Reactions  
Now, reactions at supports are evaluated using equilibrium equations (vide Fig. 

14.5e) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

RA ×6 +14.733 −20 ×3 −2 ×6 ×3 −24.133 = 0 
 

RA = 17.567 kN(↑) 
 

RBL = 16 − 1.567 = 14.433 kN(↑)  
 

R  = 8 + 
14.733

 
−0.63

 = 11.526 kN(↑)  
 

BR 4  
 

  
 

RC = 8 + 3.526 = 4.47 kN(↑) (9) 
 

 

The shear force and bending moment diagrams are shown in Fig. 14.5f. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 



Example  
 
Draw shear force and bending moment diagram for the continuous beam ABCD 

loaded as shown in Fig.14.6a.The relative stiffness of each span of the beam is 

also shown in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the cantilever beam portion CD, no slope-deflection equation need to be 

written as there is no internal moment at end D. First, fixing the supports at B and 

C, calculate the fixed end moments for span AB and BC. Thus, 
 

M AB
F
 = 

3
 
×8

2
  =16 kN.m  

  12   

M BA
F
 = −16 kN.m   

M 
F
 = 10× 3 ×3

2
 = 7.5 kN.m  

BC  62   

MCB
F
 = −7.5 kN.m (1) 

 
In the next step write slope-deflection equation. There are two equations for each 

span of the continuous beam. 
 



M AB =16 + 
2EI

 (θB ) =16 + 0.25θB EI  
8  

M BA = −16 + 0.5θB EI  

M BC = 7.5 + 
2

 
×2EI

 (2θB +θC ) = 7.5 +1.334EIθB + 0.667EIθC  
6  

MCB = −7.5 +1.334EIθC +0.667EIθB (2) 
 
Equilibrium equations  
The free body diagram of members AB , BC and joints B and C are shown in 

Fig.14.6b.One could write one equilibrium equation for each joint B and C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Support B, 
 

∑MB = 0    M BA + M BC = 0 (3) 
 

∑MC = 0    M CB + M CD = 0 (4) 
 

We know that MCD =15 kN.m    (5) 
 

 ⇒ MCB = −15 kN.m (6) 
 

Substituting   the   values of MCB     and   MCD in   the   above equations 
 

for M AB , M BA , M BC and  M CB we get,   
 

 
θB = 

24.5  
=8.164 

 
 

 
3.001 

 
 

    
 

 θC = 9.704  (7) 
 

 

Substituting θB ,θC in the slope-deflection equations, we get 
 
 
 



M
 AB = 16 + 0.25 EI θ B = 16 + 0.25EI × 

8.164   
=18.04 kN.m 

 
 

 EI  
 

             

M
 BA = −16 + 0.5EI θ B = − 16 + 0.5EI × 

8.164 
= −11.918 kN.m 

 
 

EI  
 

             M
 BC = 7.5 + 1.334EI ×  8.164 +0.667EI( 9.704 ) =11.918 kN.m  

 

       

    EI    EI  
 

M
 CB = −7.5 + 0.667EI × 

8.164 
+ 1.334EI(− 

9.704 
) = −15 kN.m (8)  

EI 

 
 

          EI  
  

Reactions are obtained from equilibrium equations (ref. Fig. 14.6c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

RA ×8 −18.041−3×8 ×4 +11.918 = 0 

 

RA =12.765 kN 

 

RBR = 5 − 0.514kN = 4.486 kN 

 

RBL =11.235 kN 

 

RC = 5 + 0.514kN =5.514 kN 

 

The shear force and bending moment diagrams are shown in Fig. 14.6d. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For ease of calculations, fixed end forces for various load cases are given in Fig.  
14.7. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 



Introduction 
 
In this lesson, slope deflection equations are applied to solve the statically 
indeterminate frames without side sway. In frames axial deformations are much 
smaller than the bending deformations and are neglected in the analysis. With 
this assumption the frames shown in Fig 16.1 will not side sway. i.e. the frames 
will not be displaced to the right or left. The frames shown in Fig 16.1(a) and Fig 
16.1(b) are properly restrained against side sway. For example in Fig 16.1(a) the 
joint can’t move to the right or left without support A also moving .This is true also 
for joint D .Frames shown in Fig 16.1 (c) and (d) are not restrained against side 

sway. However the frames are symmetrical in geometry and in loading and 
hence these will not  side sway. In general, frames do not side sway if 
 

1) They are restrained against side sway.   
2) The frame geometry and loading is symmetrical  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For the frames shown in Fig 16.1, the angle ψ in slope-deflection equation is  
zero. Hence the analysis of such rigid frames by slope deflection equation 

essentially follows the same steps as that of continuous beams without support 

settlements. However, there is a small difference. In the case of continuous 

beam, at a joint only two members meet. Whereas in the case of rigid frames two 

or more than two members meet at a joint. At joint C in the frame shown in Fig 

16.1(d) three members meet. Now consider the free body diagram of joint C as 

shown in fig 16.2 .The equilibrium equation at joint C is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑M C  = 0 ⇒     M CB + M CE  + M CD  = 0 
 



At each joint there is only one unknown as all the ends of members meeting at a 

joint rotate by the same amount. One would write as many equilibrium equations 

as the no of unknowns, and solving these equations joint rotations are evaluated. 

Substituting joint rotations in the slope–deflection equations member end 

moments are calculated. The whole procedure is illustrated by few examples. 

Frames undergoing sidesway will be considered in next lesson. 
 
Example  
 
Analyse the rigid frame shown in Fig 16.3 (a). Assume EI to be constant for all 

the members. Draw bending moment diagram and also sketch the elastic curve. 
 
Solution  
In this problem only one rotation needs to be determined i. e. θB . Thus the 

required equations to evaluate θB is obtained by considering the equilibrium of 

joint B . The moment in the cantilever portion is known. Hence this moment is 

applied on frame as shown in Fig 16.3 (b). Now, calculate the fixed-end moments 

by fixing the support B (vide Fig 16.3 c). Thus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



M BD
F
  = +5 kNm 

 

M DB
F
  = −5 kNm 

 

M BC
F
  = 0 kNm 

 

M BC
F
  = 0 kNm 

 

For writing slope–deflection equations two spans must be considered,  BC 
 

and BD . Since supports C and D  are fixedθC  =θD  = 0 . Also the frame is 
 

restrained against sidesway.    
 

M
 BD = 5 + 

 2EI 
[2θ B ]= 5 + EIθB 

 

4 
 

    

M
 DB = 5 + 

 2EI 
[θ B ]= −5 + 0.5EIθB 

 

4  

    M
 BC = EIθB  

 

M
 CB = 0.5EIθB (2) 

 

Now consider the joint equilibrium of support B , (see Fig 16.3 d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



∑M B  = 0 ⇒  M BD + M BC −10 = 0 (3) 
 

Substituting the value of  M BD and M BC   and from equation (2) in the above 
 

equation      
 

5 + EIθB + EIθB −10 = 0  
 

 
θB = 

2.5  
(4) 

 

 
EI  

    
 

Substituting the values of  θB in equation (2), the beam end moments are 
 

calculated      
 

 

M BD  = +7.5 kN ⋅m 

 

M DB  = −3.75 kN ⋅m 

 

M BC  = +2.5 kN ⋅m 

 

M CB  = +1.25 kN ⋅m (5) 
 

The reactions are evaluated from static equations of equilibrium. The free body 

diagram of each member of the frame with external load and end moments are 

shown in Fig 16.3 (e) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RCy  =10.9375 kN(↑) 

 

RCx  = −0.9375 kN(←) 
 

RDy  = 4.0625 kN(↑) 

 

RDx  = 0.9375 kN(→) 
 
 
 
Bending moment diagram is shown in Fig 16.3(f) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(6) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The vertical hatching is use to represent the bending moment diagram for the 

horizontal member (beams) and horizontal hatching is used for bending moment 

diagram for the vertical members.  
The qualitative elastic curve is shown in Fig 16.3 (g). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example  
 
Compute reactions and beam end moments for the rigid frame shown in Fig 16.4  
(a). Draw bending moment and shear force diagram for the frame and also 

sketch qualitative elastic curve. 
 
Solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this frame rotations θA  and θB  are evaluated by considering the equilibrium of 
 
joint A and B . The given frame is kinematically indeterminate to second degree. 

Evaluate fixed end moments. This is done by considering the kinematically 

determinate structure. (Fig 16.4 b) 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

M DB
F
 = 

 5 ×6
2
  
=15 kN.m 

 
 

12 
   

 

        
 

M BA
F
 = 

−5 ×6
2
 
= −15 kN.m 

 
 

12 
    

 

        
 

M BC
F
 = 

 5 ×2 ×2
2
 

= 2.5 kN.m 
 

 

4 
  

 

  2      
 

M CD
F
 =  

−5
 
×2

 
×2

2
  = −2.5 kN.m (1) 

 

  4
2
     

  
Note that the frame is restrained against sidesway. The spans must be 

considered for writing slope-deflection equations viz, A , B and AC . The beam 

end moments are related to unknown rotations θA and θB by following slope-

deflection equations. (Force deflection equations). Support C is fixed and hence  
θC  = 0. 
 

M AB = M ABL
F
 + 

2E
L

(2I
 

)
(2θ A +θB ) 

 
AB 

 



M AB  =15 − +1.333EIθA + 0.667EIθB 

 

M BA = −15 + 0.667EIθA +1.333EIθB 

 

M BC  = 2.5 + EIθB +0.5EIθC 

 

M CB  = −2.5 + 0.5EIθB (2) 
 

 

Consider the joint equilibrium of support A (See Fig 16.4 (c)) 
 

∑M A = 0 

 

M AB  = 0 =15 +1.333EIθA + 0.667EIθB (3) 
 

1.333EIθA ++0.667EIθB = −15 

 

Or, 2θA +θB = −22.489 

 EI 

Equilibrium of joint B (Fig 16.4(d))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 ∑M B  = 0  ⇒  M BC + M BA  = 0   (4) 
 

Substituting the value of M BC  and M BA in the above equation, 
 

 2.333EIθB + 0.667EIθA  =12.5    (5) 
 

Or, 3.498θB +θA = 
18.741       

 

 
EI 

        
 

              
 

Solving equation (3) and (4)           
 

 θB = 10.002 (counterclockwise)     
 

       

   EI          
(6)  

   −16.245
 (clockwise) 

   
 

 θB =     
 

   EI           
 

Substituting the value of θA  and  θB in equation (2) beam end moments are 
 

evaluated.               
 

   − 16.245 10.002   
 

M AB = 15 +1.333EI    + 0.667EI   = 0  

 

EI 
  

EI 
 

          
 

      −16.245 10.002  
 

M BA = −15 +0.667EI    

 +.1.33EI   

 = −1  

 

EI 
 

EI 
 

 

            
  

M BC  = 2.5 + EI 
10.002

  =12.5 kN.m 

EI 

 

 10.002   
(7) 

 M
 CB = −2.5 + 0.5EI  

 = 2.5 kN.m  

EI 
 

     
  



Using these results, reactions are evaluated from equilibrium equations as shown 

in Fig 16.4 (e) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The shear force and bending moment diagrams are shown in Fig 16.4(g) and 

16.4 h respectively. The qualitative elastic curve is shown in Fig 16.4 (h). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example  
 
Compute reactions and beam end moments for the rigid frame shown in Fig  
16.5(a). Draw bending moment diagram and sketch the elastic curve for the 

frame. 
 
Solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The given frame is kinematically indeterminate to third degree so three rotations 

are to be calculated,θB ,θC andθD . First calculate the fixed end moments (see 

Fig 16.5 b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

M AB
F
 = 

5
 
×4

2
  = 4 kN.m  

  20     

M BA
F
 = −5 ×4

2
 = −2.667 kN.m  

  30     

M 
F
 = 10× 3 ×3

2
 = 7.5 kN.m  

BC  6
2
     

M 
F
 = −10 × 3 ×3

2
 = −7.5 kN.m  

CB  6
2
     

M BD
F
  = M DB

F
 = M CE

F
  = M EC

F
  = 0 (1) 

 

 

The frame is restrained against sidesway. Four spans must be considered for 

rotating slope – deflection equation: AB, BD, BC and CE. The beam end 



moments are related to unknown rotation at B, C, and D. Since the supports A 

and E are fixed. θA =θE = 0 . 

 

M AB = 4 + 
2

 
EI

4 [ 2θA +θB ] 

 

M AB = 4 + EI θA + 0.5 EI θ B = 4 +0.5EIθB 
 
 
 

M BA = −2.667EI θA + EIθ B = −2.667 + EIθB 
 
 
 

M BD = EI θB +0.5EIθD 
 
 
 

M DB = 0.5EI θB + EIθD  

M BC  = 7.5 + 
2

 
E

 

(
 
2I

 

)
[ 2θB + θ C ] = 7.5 + 1.333 EI θB +0.667EIθC 

6  

MCB = −7.5 + .667 EI θB +1.333EIθC  

MCE  = EI θC + 0.5EI θ E = EIθC  

M EC  = 0.5 EI θC + 0.5 EI θE = 0.5EIθC (2) 
 

Consider the equilibrium of joints B, D, C (vide Fig. 16.5(c)) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑M B  = 0 ⇒ M BA + M BC  + M BD  = 0 (3) 

∑M D  = 0 ⇒ M DB  = 0 (4) 

∑M C  = 0 ⇒ M CB + M CE  = 0 (5) 

Substituting the values of M BA , M BC , M BD , M DB , M CB and M CE in the equations (3), 

(4), and (5)    

3.333 EI θB +0.667 EI θ C + 0.5 EIθD = −4.833 

0.5EI θB + EIθD = 0  

2.333 EI θC +0.667 EIθB = 7.5 (6) 

Solving the above set of simultaneous equations, θB ,θC and θD  are evaluated. 

 

EIθB = −2.4125 

 



EIθC  = 3.9057 

 

EIθD =1.2063 (7) 

 

Substituting  the  values  of  θB ,θC   and  θD in  (2),  beam  end  moments  are 
 
computed. 
 

M AB = 2.794 kN.m 

 

M BA = −5.080 kN.m 

 

M BD = −1.8094 kN.m 

 

M DB = 0 

 

M BC  = 6.859 kN.m 

 

MCB = −3.9028 kN.m 

 

MCE  = 3.9057 kN.m 

 

M EC  =1.953 kN.m (8) 
 

The reactions are computed in Fig 16.5(d), using equilibrium equations known 

beam-end moments and given loading. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

RAy = 6.095 kN (↑) 

 

RDy = 9.403 kN (↑) 

 

REy = 4.502 kN (↑) 

 

RAx =1.013 kN (→) 

 

RDx = 0.542 kN (→) 

 

REx = −1.465 kN (←) (9) 

 

The bending moment diagram is shown in Fig 16.5.(e)  and the elastic curve is  
shown in Fig 16.5(f). 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Objectives 
 
After reading this chapter the student will be able to  
1. Derive slope-deflection equations for the frames undergoing sidesway.  
2. Analyse plane frames undergoing sidesway.  
3, Draw shear force and bending moment diagrams. 
4. Sketch deflected shape of the plane frame not restrained against sidesway. 
 

 Introduction 
 
In this lesson, slope-deflection equations are applied to analyse statically 

indeterminate frames undergoing sidesway. As stated earlier, the axial 

deformation of beams and columns are small and are neglected in the analysis. 

In the previous lesson, it was observed that sidesway in a frame will not occur if 
 

1. They are restrained against sidesway.   
2. If the frame geometry and the loading are symmetrical.  

 
In general loading will never be symmetrical. Hence one could not avoid 

sidesway in frames. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For example, consider the frame of Fig. 17.1. In this case the frame is symmetrical 

but not the loading. Due to unsymmetrical loading the beam end moments M BC and 

M CB are not equal. If b is greater than a , then M BC > M CB . In 
 



such a case joint B and C are displaced toward right as shown in the figure by an 

unknown amount . Hence we have three unknown displacements in this frame: 

rotations θB ,θC and the linear displacement . The unknown joint rotations  
θB and θC  are related to joint moments by the moment equilibrium equations.  
Similarly, when unknown linear displacement occurs, one needs to consider 

force-equilibrium equations. While applying slope-deflection equation to columns  
 

 
 

 

  
 

   
 

unknowns. It is observed that in the column AB , the end B undergoes a linear 
displacement with respect to end A . Hence the slope-deflection equation for 
column AB is similar to the one for beam undergoing support settlement. 

However, in this case is unknown. For each of the members we can write the 
following slope-deflection equations. 
 

 

M AB  = M AB
F
 + 

2EI [2θA +θB −3ψ AB ] where ψ AB  = − 
 

 

 

h 
 

 h  
  

ψ AB is assumed to be negative as the chord to the elastic curve rotates in the 

clockwise directions. 
 

M
 BA = M BA

F
 + 

 2EI  
[2θ B +θA −3ψ AB ] 

  
 

  h   
 

         

M
 BC = M BC

F
 + 

 2EI  
[2θ B +θC ] 

  
 

 h    
 

         

M
 CB = M CB

F
 + 2EI [2θ C +θB ]   

 

    h     
 

M
 CD = M CD

F
 + 

 2EI  
[2θ C +θD −3ψCD ] ψCD = − 

 
 

 h  h 
 

        

M
 DC = M DC

F
 +  

2EI
 [2θD +θC −3ψCD ] (17.1) 

 

    h     
 

As there are three unknowns (θB ,θC  and  ), three equations are required to 
 

evaluate them. Two equations are obtained by considering the moment 

equilibrium of joint B and C respectively. 
 

∑M B = 0  
M

 BA 

+
 

M
 BC  

=
 

0
 (17.2a) 

∑M C  = 0  
M

 CB 

+
 

M
 CD 

=
 

0
 (17.2b)  

Now consider free body diagram of the frame as shown in Fig. 17.2. The 

horizontal shear force acting at A and B of the column AB is given by 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

H1  = 

M
 BA 

+
 

M
 AB 

(17.3a) 
 

h  

  
 

 

Similarly for member CD , the shear force H3 is given by 
 

H3 = 

M
 CD 

+
 

M
 DC 

(17.3b) 
 

h  

  
 

 
Now, the required third equation is obtained by considering the equilibrium of 

member BC , 
 

∑FX  = 0 ⇒H1 + H3 = 0  
 

M
 BA 

+
 

M
 AB 

+ 

M
 CD 

+
 

M
 DC 

= 0 (17.4)  
   

h h  
 

 
Substituting the values of beam end moments from equation (17.1) in equations  
(17.2a), (17.2b) and (17.4), we get three simultaneous equations in three 

unknowns θB ,θC and , solving which joint rotations and translations are  
evaluated. 
 
 



Knowing joint rotations and translations, beam end moments are calculated from 

slope-deflection equations. The complete procedure is explained with a few 

numerical examples. 
 
Example  
 
Analyse the rigid frame as shown in Fig. 17.3a. Assume EI to be constant for all 

members. Draw bending moment diagram and sketch qualitative elastic curve. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution  
In the given problem, joints B and C rotate and also translate by an amount . 

Hence, in this problem we have three unknown displacements (two rotations and 

one translation) to be evaluated. Considering the kinematically determinate 

structure, fixed end moments are evaluated. Thus, 
 

M AB
F
  = 0 ; M BA

F
 = 0 ; M BC

F
 = +10 kN.m ; M CB

F
  = −10kN.m ; M CD

F
  = 0 ; M DC

F
  = 0. (1) 

 

The ends A and D are fixed. Hence, θA =θD = 0. Joints B and C translate by 
 

the same amount . Hence, chord to the elastic curve AB' and DC' rotates by an 
 

amount (see Fig. 17.3b)        
 

  
ψ

 AB =ψCD = − 3   (2)  
 

         
 

Chords  of the  elastic curve AB' and DC'  rotate in the clockwise  direction; 
 

henceψ AB and ψCD  are taken as negative.     
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now, writing the slope-deflection equations for the six beam end moments, 
 

M AB = M AB
F
 + 

2EI
3 [2θ A +θB −3ψ AB ] 

 

M AB
F
 = 0 ;θA = 0 ;ψ AB = − 3 . 

 

M AB = 
2

3 EIθB + 
2

3 EI 

 

M BA = 
4

3 EIθB + 
2

3 EI 

 

M BC  =10 + EIθB + 
1

2 EIθC 

 

M CB = −10 + 
1

2 EIθB + EIθC 

 

M CD = 
4

3 EIθC + 
2

3 EI 
 
 
 
 
 
 



M DC  = 
 2 

EIθC + 
2 

EI 
 

(3) 
 

3 3 
 

 

     
 

Now, consider the joint equilibrium of B and C (vide Fig. 17.3c).  
 

∑
M

 B = 0 ⇒ 

M
 BA 

+
 

M
 BC  

=
 

0
 (4) 

 

∑
M

 C = 0 ⇒ 

M
 CB 

+
 

M
 CD 

=
 

0
 (5) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The required third equation is written considering the horizontal equilibrium of the 

entire frame i.e. ∑FX = 0 (vide Fig. 17.3d). 
 

 

− H1 +10 − H2  = 0 

 

⇒H1 + H2  =10 . (6) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Considering the equilibrium of the column AB and CD , yields 
 

H1  = 

M
 BA 

+
 

M
 AB 

 

3  

 
 

 
and  

H
 2 = 

M
 CD 

+
 

M
 DC 

(7) 
 

3  

   
 

 
The equation (6) may be written as, 
 

M BA + M AB + M CD + M DC  = 30 (8) 

 

Substituting the beam end moments from equation (3) in equations (4), (5) and  
(6) 
 

2.333EIθB + 0.5EIθC + 0.667EI = −10 (9) 

2.333EIθC + 0.5EIθB + 0.667EI =10 (10) 
 

 



2EIθB + 2EIθC + 
8 

EI  = 30 (11) 
 

3  

   
 

 
Equations (9), (10) and (11) indicate symmetry and this fact may be noted. This 

may be used as the check in deriving these equations. 
 
Solving equations (9), (10) and (11), 
 

EIθB = −9.572 ; EIθC  =1.355    and   EI  =17.417 . 

 

Substituting the values of EIθB , EIθC  and EI  in the slope-deflection equation 
 
(3), one could calculate beam end moments. Thus, 
 

M AB = 5.23 kN.m  (counterclockwise) 

 

M BA = −1.14 kN.m(clockwise) 

 

M BC =1.130 kN.m 

 

MCB = −13.415 kN.m 

 

MCD =13.406 kN.m 

 

M DC =12.500 kN.m . 

 

The bending moment diagram for the frame is shown in Fig. 17.3 e. And the 

elastic curve is shown in Fig 17.3 f. the bending moment diagram is drawn on the 

compression side. Also note that the vertical hatching is used to represent 

bending moment diagram for the horizontal members (beams). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Example 2 
 
Analyse the rigid frame as shown in Fig. 17.4a and draw the bending moment 

diagram. The moment of inertia for all the members is shown in the figure.  
Neglect axial deformations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Solution: 
 

In this problem rotations and translations at joints B and C need to be evaluated. 

Hence, in this problem we have three unknown displacements: two rotations and 

one translation. Fixed end moments are 
 

 
M AB

F
 =  

12 ×3 ×9 
= 9 kN.m ; M BA

F
 = −9 kN.m ; 

 
 

  

(1) 
 

  36      
 

 M BC
F
  = 0 ; M CB

F
  = 0 ; M CD

F
  = 0 ; M DC

F
  = 0.  

 

The joints B and C translate by the same amount . Hence, the chord to the 
 

elastic curve rotates in the clockwise direction as shown in Fig. 17.3b.  
 

  ψ AB = − 
6 
    

 

        
 

and  ψCD = − 
3 
   (2) 

 

        
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now, writing the slope-deflection equations for six beam end moments, 
 

M AB = 9 + 
2(2

6
EI

 
)
 θB + 2 

 
 

M AB = 9 +0.667EIθB + 0.333EI 

 

M BA = −9 +1.333EIθB +0.333EI 
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M BC  = EIθB + 0.5EIθC 

 

M CB = 0.5EIθB + EIθC 

 

M CD  =1.333EIθC + 0.667EI 

 

M DC  = 0.667EIθC + 0.667EI (3) 

Now, consider the joint equilibrium of B and C .  

∑M B = 0 ⇒ 

M
 BA 

+
 

M
 BC  

=
 

0
 (4) 

∑M C  = 0 ⇒ 

M
 CB 

+
 

M
 CD 

=
 

0
 (5)  

The required third equation is written considering the horizontal equilibrium of the 

entire frame. Considering the free body diagram of the member BC (vide Fig. 

17.4c), 
 

H1 + H2  = 0 . 
 

(6) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The forces H1   and H2   are calculated from the free body diagram of column  

AB and CD . Thus,     
 

H1  = −6 + 
 
M

 BA 

+
 

M
 AB   

 

 
6 

   
 

      
 

and     
 

H 2  = 

M
 CD 

+
 

M
 DC 

 (7)   
 

   3    
 

Substituting the values of H1  and H2 into equation (6) yields,  
 

M BA + M AB + 2M CD + 2M DC  = 36 (8) 
 

 
 
 
 
Substituting the beam end moments from equation (3) in equations (4), (5) and  
(8), yields 
 

2.333EIθB + 0.5EIθC + 0.333EI = 9  

2.333EIθC + 0.5EIθB + 0.667EI = 0  

2EIθB + 4EIθC +3.333EI = 36  (9) 

Solving equations (9), (10) and (11),    

EIθB = 2.76 ; EIθC  = −4.88 and EI  =15.00. 

Substituting the values of EIθB , EIθC and EI in the slope-deflection equation 

(3), one could calculate beam end moments. Thus, 

M AB =15.835 kN.m (counterclockwise) 

M BA = −0.325 kN.m(clockwise)  
M BC = 0.32 kN.m  
MCB = −3.50 kN.m  
MCD = 3.50 kN.m  
M DC = 6.75 kN.m . 

 

The bending moment diagram for the frame is shown in Fig. 17.4 d. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example 3 
 
Analyse the rigid frame shown in Fig. 17.5 a. Moment of inertia of all the 

members are shown in the figure. Draw bending moment diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Under the action of external forces, the frame gets deformed as shown in Fig. 

17.5b. In this figure, chord to the elastic curve are shown by dotted line. BB' is 

perpendicular to AB and CC" is perpendicular to DC . The chords to the elastic 

 



curve AB" rotates by an angle ψ AB , B"C" rotates by ψ BC and DC rotates by ψCD 

as shown in figure. Due to symmetry, ψCD =ψ AB . From the geometry of the 
 
figure, 

 

ψ 
AB = 

BB"  
= − 1 

 

L
AB 

L
AB 

 

    

    
 

But 
 

1
  
=

 cosα 

Thus,  
ψ AB 

= −
 LAB cosα 

= −
 5 

 
 
 

ψ
 CD 

= −
 5 

 

 
 

ψ BC  = 
2
  = 

2 tanα 
= tanα = 

 
(1)  

 

2 5 
 

 2     
 

We have three independent unknowns for this problem θB ,θC  and . The ends 
 

A and D are fixed. Hence, θA =θD = 0. Fixed end moments are,  
 

 

M AB
F
  = 0 ; M BA

F
 = 0 ; M BC

F
  = +2.50 kN.m ; M CB

F
  = −2.50kN.m ; M CD

F
  = 0 ; M DC

F
  = 0. 

 

Now, writing the slope-deflection equations for the six beam end moments, 
 

M
 AB = 

2E(2I ) [θ A −3ψ AB ]  
 

  
 

 5.1   
 

M AB = 0.784EIθB + 0.471EI  
 

M BA =1.568EIθB + 0.471EI  
 

M
 BC = 2.5 + 2EIθB + EIθC − 0.6EI  

 

M
 BC = −2.5 + EIθB + 2EIθC −0.6EI  

 

M CD =1.568EIθC + 0.471EI  
 

M
 DC = 0.784EIθC + 0.471EI (2) 

 

Now, considering the joint equilibrium of B and C , yields 
 
 
 



∑M B = 0 
⇒M 

BA 
+
 
M

 BC  
=
 
0
  

3.568EIθB + EIθC − 0.129EI = −2.5 (3) 

∑M C  = 0 
⇒M 

CB 
+
 
M

 CD 
=
 
0
  

3.568EIθC + EIθB − 0.129EI = 2.5 (4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shear equation for   

 

Column AB 

5H1 − M AB − M BA + (1)V1 = 0 (5) 
 

 
 

Column CD 

5H 2 − M CD − M DC + (1)V2  = 0 (6) 
 

 
 

Beam BC   
 

∑M C  = 0 2V1 − M BC − M CB −10 = 0 (7) 
 

 



 ∑
F

X = 0    H1 + H2  = 5  (8) 
 

 ∑FY  = 0    V1 −V2 −10 = 0 (9) 
 

From equation (7), V = M BC + M CB +10      
 

      

  1     
2 

      
 

             
 

From equation (8), H1 = 5 − H2         
 

From equation (9), V 
2 
=V  −10 = M BC + M CB +10  −10   

 

     

  1    
2 

    
 

             
 

Substituting the values of V1 , H1 and V2 in equations (5) and (6),  
 

60 −10H 2 − 2M AB − 2M BA + M BC + M CB = 0  (10) 
 

−10 +10H 2 − 2M CD − 2M DC + M BC + M CB = 0 (11) 
 

Eliminating H2  in equation (10) and (11),    
 

M AB + M BA + M CD + M DC − M BC − M CB = 25  (12) 
 

Substituting the values of  M AB , M BA , M CD , M DC  in (12) we get the required third 
 

equation. Thus,               
 

0.784EIθB + 0.471EI  + 1.568EIθB + 0.471EI + 1.568EIθC + 0.471EI + 
 

0.784EIθC + 0.471EI  -( 2.5 + 2EIθB + EIθC − 0.6EI )-  
 

( − 2.5 + EIθB + 2EIθC − 0.6EI  ) = 25    
 

Simplifying,               
 

 − 0.648EIθC −0.648EIθB +3.084EI = 25 (13) 
 

Solving simultaneously equations (3) (4) and (13), yields  
 

EIθB = −0.741 ;  EIθC =1.205  and EI  = 8.204 .  
 

Substituting the values of  EIθB , EIθC and EI  in the slope-deflection equation 
 

(3), one could calculate beam end moments. Thus, 
 

M AB = 3.28 kN.m 

 





 

∑M B = 0 ⇒ M BA + M BC = 0 (18.1a) 

∑M C = 0 ⇒ M CB + M CD = 0 (18.1b) 
 

According to slope-deflection equation, the beam end moments are written as 
 

M BA = M BA
F
 + 

2
L

EI
 
AB

 (2θB ) 
AB 

4EI AB 
is known as stiffness factor for the beam AB  and it is denoted 

 

L
AB 

 

 
 

by k AB . M BA
F

 is the fixed end moment at joint B of beam AB when joint B is fixed.  
Thus, 
 

M BA = M BA
F
 + K ABθB 

 

M 
 

= M 
F
 + K 

    θ 
C   

BC θ B +     
 

 

      

 BC  BC     

2 
   

            
 

  
= M CB

F
 
    θ  

B   M
 CB +

 
K

CB  
θ

C +     

 

 

2 
 

        
 

 

M CD = M CD
F

 + KCDθC (18.2) 

In Fig.18.1b, the counterclockwise beam-end moments M BA  and M BC   produce 

a clockwise moment  M B on the joint as shown in Fig.18.1b. To start with, in  
moment-distribution method, it is assumed that joints are locked i.e. joints are 
prevented from rotating. In such a case (vide Fig.18.1b), 

θB =θC = 0 , and hence 
 

M BA = M BA
F

  

M BC = M BC
F

  

M CB = M CB
F

  

M CD = M CD
F

 (18.3) 
 
Since joints B and C are artificially held locked, the resultant moment at joints B 

and C will not be equal to zero. This moment is denoted by M B and is known as 

the unbalanced moment. 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thus,  

M B = M BA
F

 + M BC
F

 

 

In reality joints are not locked. Joints B and C do rotate under external loads. 

When the joint B is unlocked, it will rotate under the action of unbalanced  

moment M B . Let the joint B rotate by an angleθB1 , under the action of M B . 

This will deform the structure as shown in Fig.18.1d and introduces distributed  

moment  M BA
d
, M BC

d
  in the span BA and BC respectively as shown in the figure. 

 
The unknown distributed moments are assumed to be positive and hence act in 
counterclockwise direction. The unbalanced moment is the algebraic sum of the 

fixed end moments and act on the joint in the clockwise direction. The 
unbalanced moment restores the equilibrium of the joint B. Thus, 
 

∑M B = 0,   M BA
d +M BC

d +M B = 0 (18.4) 

The distributed moments are related to the rotation θB1   by the slope-deflection 

equation.  

  



M BA
d
 = K BAθB1 

 

M BC
d
 = K BCθB1 (18.5) 

 
Substituting equation (18.5) in (18.4), yields 
 

θ B1 ( K BA + K BC )= −M B  
 

θ
 B1 

= −
 K BA

M
+

B
K BC 

 

 

In general, 
 

θB1 = − 
M B 

(18.6) 
 

∑
K

 
 

  
 

where summation is taken over all the members meeting at that particular joint. 

Substituting the value of θB1 in equation (18.5), distributed moments are  
calculated. Thus,  

d  
K

 BA    
 

M
 BA = − 

 

 

M B 

  

∑
K

  
 

M BC
d
 = − 

K
 BC  

M B (18.7) 
 

∑
K

 
 

 

     
 

The ratio ∑
KBA

K is known as the distribution factor and is represented by DFBA . 
 
Thus, 
 

M BA
d
 = −DFBA. M B 

 

M BC
d
 = −DFBC. M B (18.8) 

 
The distribution moments developed in a member meeting at B, when the joint B 

is unlocked and allowed to rotate under the action of unbalanced moment M B is 

equal to a distribution factor times the unbalanced moment with its sign reversed. 
 
As the joint B rotates under the action of the unbalanced moment, beam end 

moments are developed at ends of members meeting at that joint and are known 

as distributed moments. As the joint B rotates, it bends the beam and beam end 

moments at the far ends (i.e. at A and C) are developed. They are known as 

carry over moments. Now consider the beam BC of continuous beam ABCD. 

 

 



When the joint B is unlocked, joint C is locked .The joint B rotates by θB1  under 
 

the action of unbalanced moment M B (vide Fig. 18.1e). Now from slope-

deflection equations 
 

M BC
d
 = K BCθB  

 

M
 BC = 

1 
 
K

 BC

θ
B 

 
 

2  
 

      

M
CB = 

 1 

MBC
d
 (18.9) 

 

2  

    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The carry over moment is one half of the distributed moment and has the same 

sign. With the above discussion, we are in a position to apply moment-

distribution method to statically indeterminate beam. Few problems are solved 

here to illustrate the procedure. Carefully go through the first problem, wherein 

the moment-distribution method is explained in detail. 
 
Example  
 
A continuous prismatic beam ABC (see Fig.18.2a) of constant moment of inertia 

is carrying a uniformly distributed load of 2 kN/m in addition to a concentrated 

load of 10 kN. Draw bending moment diagram. Assume that supports are 

unyielding. 
 
 

 

 



 
 
 
 
 
 
 
 
 
 

 

Solution  
Assuming that supports B and C are locked, calculate fixed end moments 

developed in the beam due to externally applied load. Note that counterclockwise 

moments are taken as positive.  

M ABF = 

wL
2

AB = 

2
 

×9
 =1.5 kN.m 

 
12 12 

 

MBA
F
 = − 

wL
2

AB 
= − 

2 ×9 
= −1.5 kN.m  

 

12 

 

12   
 

 

M 
F 

= 
Pab

2
 
= 

10 × 2 ×4 
= 5 kN.m 

 
 

BC 
 L

2
  16    

 

           
 

    BC          
 

 F 

= − 

Pa 
2
 b 

= − 

10× 2 ×4 

= −5 kN.m (1) 
 M

CB L
2
   16   

 

    BC          
 

 
Before we start analyzing the beam by moment-distribution method, it is required 

to calculate stiffness and distribution factors. 
 

K BA = 
4EI 

 

3  

 
 

 

K BC = 4EI 
 

  
 

    
 

  4    
 

At B: ∑K = 2.333EI 
 

DFBA = 
1.333EI 

= 0.571 
 

2.333EI  

    
 

DFBC = 
 EI  

= 0.429 
 

2.333EI 
 

 

    
 

 
 



At C:  ∑K = EI 
 

DFCB =1.0 

 

Note that distribution factor is dimensionless. The sum of distribution factor at a 
joint, except when it is fixed is always equal to one. The distribution moments are 
developed only when the joints rotate under the action of unbalanced moment. In 
the case of fixed joint, it does not rotate and hence no distribution moments are 
developed and consequently distribution factor is equal to zero.  
In Fig.18.2b the fixed end moments and distribution factors are shown on a 

working diagram. In this diagram B and C are assumed to be locked. 
 
 
 
 
 
 
 
 
 
 

 

Now unlock the joint C. Note that joint C starts rotating under the unbalanced 
moment of 5 kN.m (counterclockwise) till a moment of -5 kN.m is developed 
(clockwise) at the joint. This in turn develops a beam end moment of +5 kN.m  

(M CB ). This is the distributed moment and thus restores equilibrium. Now joint C 
 
is relocked and a line is drawn below +5 kN.m to indicate equilibrium. When joint  
C rotates, a carry over moment of +2.5 kN.m is developed at the B end of 

member BC.These are shown in Fig.18.2c. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

When joint B is unlocked, it will rotate under an unbalanced moment equal to 
algebraic sum of the fixed end moments(+5.0 and -1.5 kN.m) and a carry over 
moment of +2.5 kN.m till distributed moments are developed to restore 
equilibrium. The unbalanced moment is 6 kN.m. Now the distributed moments M 

BC and M BA are obtained by multiplying the unbalanced moment with the  
corresponding distribution   factors   and   reversing   the   sign.   Thus, 

 



M BC = −2.574 kN.m and M BA = −3.426  kN.m. These distributed moments restore 
 
the equilibrium of joint B. Lock the joint B. This is shown in Fig.18.2d along with 

the carry over moments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now, it is seen that joint B is balanced. However joint C is not balanced due to 

the carry over moment -1.287 kN.m that is developed when the joint B is allowed 

to rotate. The whole procedure of locking and unlocking the joints C and B 

successively has to be continued till both joints B and C are balanced 

simultaneously. The complete procedure is shown in Fig.18.2e. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The iteration procedure is terminated when the change in beam end moments is 

less than say 1%. In the above problem the convergence may be improved if we 
leave the hinged end C unlocked after the first cycle. This will be discussed in the 

next section. In such a case the stiffness of beam BC gets modified. The above 

calculations can also be done conveniently in a tabular form as shown in Table 

18.1. However the above working method is preferred in this course. 
 
 



Table 18.1 Moment-distribution for continuous beam ABC 

 

Joint  A B  C 

Member  AB BA BC CB 

Stiffness  1.333EI 1.333EI EI EI 
Distribution  0.571 0.429 1.0 

factor      

FEM in +1.5 -1.5 +5.0 -5.0 

kN.m      

Balance    +2.5 +5.0 
joints C ,B -1.713 -3.426 -2.579 0 

and C.O.      

   -4.926 +4.926 -1.287 

Balance C   +0.644 1.287 

and C.O.      

Balance B  -0.368 -0.276 -0.138 

and C.O.      

Balance C -0.184 -5.294 +5.294 0.138 

C.O.    +0.069 0 
Balance B -0.02 -0.039 -0.030 -0.015 

and C.O.      

Balance C    +0.015 
Balanced  -0.417 -5.333 +5.333 0 
moments in     

kN.m      

 
Modified stiffness factor when the far end is hinged  
As mentioned in the previous example, alternate unlocking and locking at the 
hinged joint slows down the convergence of moment-distribution method. At the 
hinged end the moment is zero and hence we could allow the hinged joint C in 
the previous example to rotate freely after unlocking it first time. This 
necessitates certain changes in the stiffness parameters. Now consider beam 
ABC as shown in Fig.18.2a. Now if joint C is left unlocked then the stiffness of 

member BC changes. When joint B is unlocked, it will rotate by θB1 under the  
action of unbalanced moment M B .The support C will also rotate by θC1 as it is 

free to rotate. However, moment M CB = 0 . Thus 

M CB = K BCθC + 

K
 BC 

 θB (18.7) 
 

2  

But, M CB = 0 

   
 

    
 

⇒ θC = − θB 
 

   
(18.8)  

    
 

2      
 

Now, K
 BC 

  
 

M BC = K BCθB + θC (18.9)   
 

   2    
 

 

 



Substituting the value of θC in eqn. (18.9), 

M BC = K BCθB − 
 
K

 BC 
θB = 

3 K
 BC

θ
B (18.10) 

  
 

 4 4   
 

M BC = K BC
R
θB 

      

    (18.11)   
 

The  K BC
R
  is known as the reduced 

 
stiffness factor and is equal to 

3 K
 BC 

 

 4  

         

.Accordingly distribution factors also get modified. It must be noted that there is 

no carry over to joint C as it was left unlocked. 
 
Example 2 
 
Solve the previous example by making the necessary modification for hinged end  
C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fixed end moments are the same. Now calculate stiffness and distribution 

factors. 
 

 
K BA =1.333EI, K BC = 

3 
EI = 0.75EI 

 

Joint B: ∑K = 2.083, 

4  

   
 

DBA
F
 = 0.64 ,  DBC

F
 = 0.36 

 

Joint C: ∑K = 0.75EI, DCB
F
 =1.0   

 

 
All the calculations are shown in Fig.18.3a 

 

Please note that the same results as obtained in the previous example are 

obtained here in only one cycle. All joints are in equilibrium when they are 

unlocked. Hence we could stop moment-distribution iteration, as there is no 

unbalanced moment anywhere. 
 
 
 
 
 

 



Example 3 
 
Draw the bending moment diagram for the continuous beam ABCD loaded as 

shown in Fig.18.4a.The relative moment of inertia of each span of the beam is 

also shown in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution  
Note that joint C is hinged and hence stiffness factor BC gets modified. Assuming 

that the supports are locked, calculate fixed end moments. They are 
 

M AB
F
 =16 kN.m 

 

MBA
F
 = −16 kN.m 

 

MBC
F
 = 7.5 kN.m 

 

MCB
F
 = −7.5 kN.m , and 

 

MCD
F
 =15 kN.m 

 

In the next step calculate stiffness and distribution factors 

 

K BA = 
4EI   

 

8 
  

 

   
 

K BC = 
 3 8EI 

 

 4 
  

6  

   
 

 
 
 

 



K = 8EI 
 
At joint B: 
 
 
 
 
 
 
 
 
 
 
 
 
 
At C: 

 

∑K = 0.5EI +1.0EI =1.5EI 

 

DBA
F
 = 1.5

0.5
EI

EI
 = 0.333 

 

 

DBC
F
 = 

1
1.5

.0
EI

EI
 = 0.667 

 
 

∑K = EI, DCB
F =1.0 

 
Now all the calculations are shown in Fig.18.4b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This problem has also been solved by slope-deflection method (see example 

14.2).The bending moment diagram is shown in Fig.18.4c. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 



 

Instructional Objectives 
 
After reading this chapter the student will be able to 
 
1. Solve continuous beam with support settlements by the moment-

distribution method.  

2. Compute reactions at the supports.  
 
3. Draw bending moment and shear force diagrams.  
 
4. Draw the deflected shape of the continuous beam.  
 

 

Introduction 

 

In the previous lesson, moment-distribution method was discussed in the context 

of statically indeterminate beams with unyielding supports. It is very well known 

that support may settle by unequal amount during the lifetime of the structure. 

Such support settlements induce fixed end moments in the beams so as to hold 

the end slopes of the members as zero (see Fig. 19.1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

In lesson 15, an expression (equation 15.5) for beam end moments were derived 

by superposing the end moments developed due to 

 
1. Externally applied loads on beams  

 

2.   Due to displacements θA ,θB and (settlements). 
 

The required equations are,    
 

M AB = M AB
F
 + 

2EI AB  3   
 

2θA +θB −  (19.1a)  

  
 

 
L

AB 
L

AB  
 

 



 

M BA = M BA
F
 
  2EI AB  3    

 

+  2θB +θA −  

 (19.1b)  

 

L
AB 

  
 

    
L

AB  
 

This may be written as,     
 

M AB = M AB
F
 + 2K AB [2θ A +θB ]+ M AB

S
  (19.2a) 

 

MBA = M BA
F
 + 2 K AB [2θ B + θ A ]+ MBA

S
  (19.2b) 

 

where K AB = 
EI AB  

is the stiffness factor for the beam AB. The coefficient 4 has 
 

L
AB 

 

        
 

been dropped since only relative values are required in calculating distribution 

factors. 

 

Note that M AB
S
 = M BA

S
 = − 

6EI AB 

(19.3) 

 

L
2

AB 
 

   
 

 

is the beam end moments due to support settlement and is negative 
 
(clockwise) for positive support settlements (upwards). In the moment-distribution 

method, the support moments M AB
S
 and M BA

S
 due to uneven support 

settlements are distributed in a similar manner as the fixed end moments, which 

were described in details in lesson 18. 

 
It is important to follow consistent sign convention. Here counterclockwise beam 
 
taken as positive. The moment-distribution method as applied to statically 

indeterminate beams undergoing uneven support settlements is illustrated with a 

few examples. 

 
 
 
 
 
 
 
 

 

 

M AB
S
 



Example 1 
 
Calculate the support moments of the continuous beam ABC (Fig. 19.2a) having 

constant flexural rigidity EI throughout, due to vertical settlement of support B by 

5mm. Assume E = 200 GPa ; and I = 4 ×10 
−4

 m
4
 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution 

 

There is no load on the beam and hence fixed end moments are zero. However, 

fixed end moments are developed due to support settlement of B by 5mm. In the 

span AB , the chord rotates by ψ AB in clockwise direction. Thus, 
 

ψ AB = −
5

 
×10

5
−3

 
 
  

6EI AB 
  

6 ×200 ×10 
9 
×4 ×10 

−4  
5 ×10 

−3  
 

S S         
 

M AB = M BA = − 
 

ψ AB = − 
     

 

− 
  

 

 

L
AB 

 

5 

  

5 

 
 

           
 

 = 96000 Nm = 96  kNm.        (1) 
 

 

In the span BC , the chord rotates by ψBC in the counterclockwise direction and 

hence taken as positive. 
 

ψ BC  = 
5

 
×10

5
−3

 
 
 
 
 



S S 6EI BC  6 ×200 ×10
9
 ×4 ×10 −4 5 ×10

−3
  

 

M BC  = M CB = − 
 

ψ BC  = − 
  

 

 

 

 

     

L
BC 5 

  

5 

 
 

      
 

 

  = −96000 Nm = −96 kNm. (2) 
 

Now calculate stiffness and distribution factors.  
 

KBA = 
EI AB 

= 0.2EI  and  KBC  = 
3 
 
EIBC 

= 0.15EI (3)  

L
AB 

  
 

 4  
L

BC  
 

 
Note that, while calculating stiffness factor, the coefficient 4 has been dropped 

since only relative values are required in calculating the distribution factors. For 

span BC , reduced stiffness factor has been taken as support C is hinged. 
 
At B : 
 

∑K = 0.35EI 

 

DFBA = 
 0.2EI   

= 0.571 
 

 

0.35EI 
 

 

    
 

DF = 0.15EI  = 0.429 (4)  
  

BC   0.35EI   
 

     
 

At support C :   
 

∑K = 0.15EI ; DFCB  =1.0 .  
 

 

Now joint moments are balanced as discussed previously by unlocking and 

locking each joint in succession and distributing the unbalanced moments till the 

joints have rotated to their final positions. The complete procedure is shown in 

Fig. 19.2b and also in Table 19.1. 

 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 19.1 Moment-distribution for continuous beam ABC 

 

Joint  A B  C 

Member   BA BC CB 

Stiffness factor  0.2EI 0.15EI 0.15EI 

Distribution Factor  0.571 0.429 1.000 

Fixed End Moments     

(kN.m)  96.000 96.000 -96.000 -96.000 

Balance joint C and     

C.O. to B    48.00 96.000 

Balance joint B and     

C.O. to A  -13,704 -27.408 -20.592  
      

Final Moments     

(kN.m)  82.296 68.592 -68.592 0.000 
 

 

Note that there is no carry over to joint C as it was left unlocked. 
 

 

Example 2 

 

A continuous beam ABCD is carrying uniformly distributed load 5 kN / m as shown 

in Fig. 19.3a. Compute reactions and draw shear force and bending moment 

diagram due to following support settlements. 

Support B ,  0.005m vertically downwards  Support C ,  .0100m vertically downwards. 

Assume E = 200GPa ; I =1.35 ×10
−3

 m
4
 . 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution: 
 

Assume that supports A, B, C and D are locked and calculate fixed end moments 

due to externally applied load and support settlements. The fixed end beam 

moments due to externally applied loads are, 
 

M AB
F
 = 

5 ×100 
= 41.67 kN.m; M BA

F
 = −41.67 kN.m 

 
 

  
 

M BC
F
 

12  

M BC
F
 

  
 

= +41.67 kN.m; = −41.67 kN.m  
 

MCD
F
 = +41.67 kN.m; M DC

F
 = −41.67 kN.m (1) 

 

 

 

In the span AB , the chord joining joints A and B rotates in the clockwise direction 

as B moves vertical downwards with respect to A (see Fig. 19.3b). 

 

ψAB = −0.0005 radians (negative as chord AB' rotates in the clockwise direction 

from its original position) 
 

ψ BC = −0.0005  radians  

 

ψ CD = 0.001  radians (positive  as  chord  C' D  rotates  in  the  counterclockwise  
 
direction). 
 

 

Now the fixed end beam moments due to support settlements are, 
 

M AB
S
 = − 

6 EI AB 
ψ

AB = − 
6 × 200 × 10 

9
 × 1.35 ×10

−3
 

( −0.0005)  

    

10 
 

  
L

AB    
 

      = 81000 N.m =81.00 kN.m 
 

M BA
S
 = 81.00  kN.m     

 

M BC
S
 = MCB

S
 = 81.00 kN.m   

 

M CD
S
 = M DC

S
 = −162.00  kN.m  (3) 

 

 



 

In the next step, calculate stiffness and distribution factors. For span AB and CD 

modified stiffness factors are used as supports A and D are hinged. Stiffness 

factors are, 

 

K BA = 
3  EI 

= 0.075EI ; K BC  = 
EI 

= 0.10EI 
 

4 10 10  

    

(4) 
 

         
 

KCB  = 
EI

 = 0.10EI ; KCD  = 3 EI = 0.075EI 
 

 10   4 10  
 

At joint A : ∑K = 0.075EI ; DFAB =1.0    
 

At joint B : ∑K = 0.175EI ; DFBA = 0.429 ; DFBC  = 0.571 
 

At joint C : ∑K = 0.175EI ; DFCB = 0.571 ; DFCD = 0.429 
 

At joint D : ∑K = 0.075EI ; DFDC =1.0    
 

 

The complete procedure of successively unlocking the joints, balancing them and 

locking them is shown in a working diagram in Fig.19.3c. In the first row, the 

distribution factors are entered. Then fixed end moments due to applied loads 

and support settlements are entered. In the first step, release joints A and D . The 

unbalanced moments at  A and D are 122.67 kN.m, -203.67 kN.m respectively. 

Hence  balancing  moments  at A and  D  are  -122.67  kN.m,  203.67  kN.m 
 
respectively. (Note that we are dealing with beam end moments and not joint 

moments).  

 

 

 

 

 

 

 

 

 



The joint moments are negative of the beam end moments. Further 

leave  A and D unlocked as they are hinged joints. Now carry over moments 

-61.34 kN.m and 101.84 kN.m  to joint B and C respectively. In the next cycle, 

balance joints  B and C . The unbalanced moment at joint  B is 100.66 kN.m . 
 
Hence balancing moment for beam BA is −43.19  ( − 100.66 ×0.429) and for BC is 
 
−57.48 kN.m (-100.66 x 0.571) . The balancing moment on BC gives a carry over 

moment of −26.74 kN.m to joint C . The whole procedure is shown in Fig. 19.3c 

and in Table 19.2. It must be noted that there is no carryover to joints A and D as 

they were left unlocked. 
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Table 19.2 Moment-distribution for continuous beam ABCD   

Joint   A B  C  D 

Members  AB BA BC CB CD DC 

Stiffness factors 0.075 EI 0.075 EI 0.1 EI 0.1 EI 0.075 EI 0.075 EI 
Distribution  1.000 0.429 0.571 0.571 0.429 1.000 

Factors        

FEM due to 41.670 -41.670 41.670 -41.670 41.670 -41.670 

externally        

applied loads        

FEM due to 81.000 81.000 81.000 81.000 - - 
support      162.000 162.000 

settlements        

Total   122.670 39.330 122.670 39.330 - - 

       120.330 203.670 

Balance A and D -     203.670 

released  122.670      

Carry over   -61.335   101.835  

Balance B and C  -43.185 -57.480 -11.897 -8.94  

Carry over    -5.95 -26.740   

Balance B and C  2.552 3.40 16.410 12.33  

Carry over to B   8.21 1.70   

and C         

Balance B and C  -3.52 -4.69 -0.97 -0.73  

C.O. to B and C   -0.49 -2.33   

Balance B and C  0.21 0.28 1.34 1.01  

Carry over    0.67 0.14   

Balance B and C  -0.29 -0.38 -0.08 -0.06  

Final Moments  0.000 -66.67 66.67 14.88 -14.88 0.000 
 
 
 
 
 
 
 
 
 
 



Example 3 
 
Analyse the continuous beam ABC shown in Fig. 19.4a by moment-distribution 

method. The support B settles by 5mm below A and C . Assume EI to be constant 

for all members E = 200GPa ; and I = 8 ×10
6
 mm

4
 . 

 
 
 
 
 
 
 
 
 
 
 
 
 

Solution: 
 

Calculate fixed end beam moments due to externally applied loads assuming that 

support B and C are locked. 

 
 

M AB
F
 = +2 kN.m ; M BA

F
 = −2 kN.m 

(1)  

M BC
F
 = +2.67 kN.m ; M CB

F
 = −2.67 kN.m 

 

 
 

 
 

 

In the next step calculate fixed end moments due to support settlements. In the 

span AB , the chord AB' rotates in the clockwise direction and in span BC , the 

chord B'C rotates in the counterclockwise direction (Fig. 19.4b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

ψ
 AB = − 

5 ×10
−3

 
 = −1.25 ×10

−3
 radians 

         
 

4           
 

                  
 

ψ
 BC = 

5 ×10
−3

 
=1.25 ×10

−3
 radians 

        
(2) 

 

 4         
 

                  
 

      
6EI AB 

  
6 ×200 ×10 

9 
×8 ×10 

−6   
5 ×10 

−3  
 

S   S           
 

M AB = M BA = −   ψ
 AB = −      

 

−   

 

 

 

L
AB 

 

4 

  

4 

 
 

               
 

    = 3000 Nm = 3 kNm.         (3) 
 

 

M BC
S
  = M CB

S
  = −3.0kN.m 

 

In the next step, calculate stiffness and distribution factors. 
 

K AB = KBA = 0.25EI  

KBC  = 
3 

0.25EI = 0.1875EI 
 (4) 

 

   

   
 

4    
 

At joint B : ∑K = 0.4375EI ; DFBA = 0.571 ; DFBC  = 0.429 
 

At joint C : ∑K = 0.1875EI ; DFCB =1.0  
 

 

 

At fixed joint, the joint does not rotate and hence no distribution moments are 

developed and consequently distribution factor is equal to zero. The complete 

moment-distribution procedure is shown in Fig. 19.4c and Table 19.3. The 

diagram is self explanatory. In this particular case results are obtained in two 

cycles. In the first cycle joint C is balanced and carry over moment is taken to 

joint B . In the next cycle , joint B is balanced and carry over moment is taken to 

joint A . The bending moment diagram is shown in fig. 19.4d. 

 
 
 
 
 
 
 
 
 
 



Table 19.3 Moment-distribution for continuous beam ABC   

Joints      A B  C 

Member     AB BA BC CB 

Stiffness factor   0.25 EI 0.25 EI 0.1875 EI 0.1875 EI 

Distribution Factor  0.571 0.429 1.000 

Fixed End Moments 2.000 -2.000 2.667 -2.667 

due  to  applied loads     

(kN.m)          

Fixed End Moments 3.000 3.000 -3.000 -3.000 

due  to  support     

settlements (kN.m)     

Total      5.000 1.000 -0.333 -5.667 

Balance joint C and   2.835 5.667 

C.O.          

Total      5.000 1.000 2.502 0.000 

Balance joint B and -1.00 -2.000 -1.502  

C.O. to A        

Final Moments (kN.m) 4.000 -1.000 1.000 0.000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Instructional Objectives 
 
After reading this chapter the student will be able to  
1. Solve plane frame restrained against sidesway by the moment-distribution 

method.  
2. Compute reactions at the supports.  
3. Draw bending moment and shear force diagrams.  
4. Draw the deflected shape of the plane frame.  
 

 

Introduction 
 
In this lesson, the statically indeterminate rigid frames properly restrained against 
sidesway are analysed using moment-distribution method. Analysis of rigid 
frames by moment-distribution method is very similar to that of continuous beams 
described in lesson 18. As pointed out earlier, in the case of continuous beams, 
at a joint only two members meet, where as in case of rigid frames two or more 
than two members meet at a joint. At such joints (for example joint C in Fig. 20.1) 

where more than two members meet, the unbalanced moment at the beginning 
of each cycle is the algebraic sum of fixed end beam moments (in the first cycle) 
or the carry over moments (in the subsequent cycles) of the beam meeting at C . 

The unbalanced moment is distributed to members CB, CD and  
CE according to their distribution factors. Few examples are solved to explain 

procedure. The moment-distribution method is carried out on a working diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Example 1 
 
Calculate reactions and beam end moments for the rigid frame shown in Fig. 

20.2a. Draw bending moment diagram for the frame. Assume EI to be constant 

for all the members. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution 

 

In the first step, calculate fixed end moments. 

 

M BD
F
 = 5.0 kN.m 

 
 

M DB
F
 = −5.0 kN.m 

 
(1) 

 
M BC

F
 = 0.0 kN.m 

M CB
F
 = 0.0 kN.m 

 
Also, the fixed end moment acting at B on BA is clockwise. 

 

M BA
F
 = −10.0 kN.m 

 



In the next step calculate stiffness and distribution factors. 
 

K
BD 

=
 
EI 

= 0.25EI and  KBC = 
EI 

= 0.25EI 
 

4 4  

     
 

 
At joint B : 
 

∑K = 0.50EI 

 

DF = 0.25EI = 0.5 ; DF  = 0.5 (2)  
  

BD  0.5EI BC  
 

    
 

 
All the calculations are shown in Fig. 20.2b. Please note that cantilever member 

does not have any restraining effect on the joint B from rotation. In addition its 

stiffness factor is zero. Hence unbalanced moment is distributed between 

members BC and BD only. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In this problem the moment-distribution method is completed in only one cycle, 

as equilibrium of only one joint needs to be considered. In other words, there is 

only one equation that needs to be solved for the unknown θB in this problem.  
This problem has already been solved by slop- deflection method wherein 
reactions are computed from equations of statics. The free body diagram of each 
member of the frame with external load and beam end moments are again 
reproduced here in Fig. 20.2c for easy reference. The bending moment diagram 
is shown in Fig. 20.2d. 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Example 2 
 
Analyse the rigid frame shown in Fig. 20.3a by moment-distribution method. 

Moment of inertia of different members are shown in the diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution:  
Calculate fixed end moments by locking the joints A, B, C, D and E 

M AB
F
 = 

5
 
×

20
4

2
 = 4.0 kN.m 

 

M BA
F
 = −2.667 kN.m 

 

M BC
F
 = 7.5 kN.m 

 

M CB
F
 = −7.5 kN.m 

 

M BD
F
 = M DB

F
 = M CE

F
 = M EC

F
 = 0 (1) 

 

The frame is restrained against sidesway. In the next step calculate stiffness and 

distribution factors. 
 

KBA = 0.25EI  and  KBC = 
2EI 

= 0.333EI 
 

6  

   
 

 
 
 
 



KBD = 
3  EI 

= 0.1875EI ; KCE = 0.25EI (2) 
 

4 4  

    
 

At joint B :       
 

 ∑
K

 
=
 
K

BA 
+
 
K

BC 
+
 
K

BD  
 

    = 0.7705EI   
 

 DFBA = 0.325 ; DFBC = 0.432 
 

 DFBD = 0.243  (3) 
 

At joint C :       
 

 ∑K = 0.583EI   
 

 DFCB = 0.571 ; DFCD = 0.429 
 

 

In Fig. 20.3b, the complete procedure is shown on a working diagram. The 

moment-distribution method is started from joint C . When joint C is unlocked, it 
will  rotate under  the action of unbalanced  moment of 7.5 kN.m . Hence 

the 7.5 kN.m is  distributed  among members CB and  CE according to their 

distribution factors. Now joint C is balanced. To indicate that the joint C is 

balanced a horizontal line is drawn. This balancing moment in turn developed 
moments +2.141 kN.m at BC and +1.61 kN.m at EC . Now unlock joint B . The joint 
B is unbalanced and the unbalanced moment 

is − (7.5 + 2.141 − 2.67) = −6.971 kN.m .  This moment  is distributed among  three  
members meeting at B in proportion to their distribution factors. Also there is no 

carry over to joint D from beam end moment BD as it was left unlocked. For 

member BD , modified stiffness factor is used as the end D is hinged. 
 
Example 3 
 
Analyse the rigid frame shown in Fig. 20.4a by moment-distribution method. 

Draw bending moment diagram for the rigid frame. The flexural rigidities of the 

members are shown in the figure. 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution:  
Assuming that the joints are locked, calculate fixed end moments. 
 

M AB
F
 =1.333 kN.m ; M BA

F
 = −1.333 kN.m  

M BC
F
 = 4.444 kN.m; MCB

F
 = −2.222 kN.m  

MCD
F
 = 6.667 kN.m ; M DC

F
 = −6.667 kN.m  

M BE
F
 = 0.0 kN.m ; M EB

F
 = 0.0 kN.m  

MCF
F
 = 5.0  kN.m ; M FC

F
 = −5.0 kN.m (1) 

 

 

The frame is restrained against sidesway. Calculate stiffness and distribution 

factors. 
 

KBA = 0.5EI ; 
K

BC = 0.333EI ; KBE = 0.333EI    
 

KCB = 0.333EI ; 
K

CD = 0.5EI ; KCF  = 
3  2EI 

= 0.375EI  

 

4 
 

   4  
 

KDC = 0.5EI ;  KDG = 0.5EI     (2) 
 

Joint B :        
 

∑K = 0.5EI +0.333EI +0.333EI =1.166EI    
 

 



DFBA = 0.428 ; DFBC = 0.286 

 

DFBE = 0.286 

 

Joint C : 

∑K = 0.333EI +0.5EI +0.375EI =1.208EI 

 

DFCB = 0.276 ; DFCD = 0.414  

DFCF = 0.31   

Joint D :   

∑K =1.0EI   

DFDC = 0.50 ; DFDG = 0.50 (3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

The complete moment-distribution method is shown in Fig. 20.4b. The moment-

distribution is stopped after three cycles. The moment-distribution is started by 
releasing and balancing joint D . This is repeated for joints C and B respectively 

in that order. After balancing joint F , it is left unlocked throughout as it is a 

hinged joint. After balancing each joint a horizontal line is drawn to indicate that 

joint has been balanced and locked. When moment-distribution method is finally 

stopped all joints except fixed joints will be left unlocked. 
 

 



 Introduction 
 
In the previous lesson, rigid frames restrained against sidesway are analyzed 
using moment-distribution method. It has been pointed in lesson 17, that frames 
which are unsymmetrical or frames which are loaded unsymmetrically usually get 
displaced either to the right or to the left. In other words, in such frames apart 
from evaluating joint rotations, one also needs to evaluate joint translations 
(sidesway). For example in frame shown in Fig 21.1, the loading is symmetrical 
but the geometry of frame is unsymmetrical and hence sidesway needs to be 
considered in the analysis. The number of unknowns is this case are: joint 

rotations θB and θC and member rotationψ . Joint B and C get translated by the  
same amount as axial deformations are not considered and hence only one 

independent member rotation need to be considered. The procedure to analyze 

rigid frames undergoing lateral displacement using moment-distribution method 

is explained in section 21.2 using an example. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Procedure 
 
A special procedure is required to analyze frames with sidesway using moment-

distribution method. In the first step, identify the number of independent rotations 

(ψ ) in the structure. The procedure to calculate independent rotations is  
explained in lesson 22. For analyzing frames with sidesway, the method of 

superposition is used. The structure shown in Fig. 21.2a is expressed as the 

sum of two systems: Fig. 21.2b and Fig. 21.2c. The systems shown in figures  
21.2b and 21.2c are analyzed separately and superposed to obtain the final 
answer. In system 21.2b, sidesway is prevented by artificial support at C . Apply 

all the external loads on frame shown in Fig. 21.2b. Since for the frame, 
sidesway is prevented, moment-distribution method as discussed in the previous  
lesson is   applied and beam end   moments   are   calculated. 

Let M AB
'
 , M BA

'
 , M BC

'
 , M CB

'
 , M CD

'
   and M DC

'
 be the balanced moments obtained by 

distributing fixed end moments due to applied loads while allowing only joint 

rotations (θB and θC ) and preventing sidesway.  
Now, calculate reactions H A1  and H D1 (ref. Fig 21.3a).they are , 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 H
 A1 

  M 
'
  +M 

'
 Pa 

 

 

= 

 AB   BA 
+ 

 
 

   h2  h2  

         

 H
 D1 

  M 
'
  +M 

'
  

 

 

= 

 CD  DC   
 

    h1     
 

          
 

again, R = P − (H A1 + H D1 ) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(21.1) 
 

 

(21.2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig 21.2c apply a horizontal force F in the opposite direction of R . Now k F = R 

, then the superposition of beam end moments of system (b) and k times 
 
(c) gives the results for the original structure. However, there is no way one could 

analyze the frame for horizontal force F , by moment-distribution method as sway 

comes in to picture. Instead of applying F , apply arbitrary known displacement / 

sidesway ' as shown in the figure. Calculate the fixed end beam moments in the 

column AB and CD for the imposed horizontal displacement. Since joint 

displacement is known beforehand, one could use moment-distribution method to 
 
analyse this frame. In this case, member rotations ψ are related to joint 

translation  which  is  known.  Let M AB
''
 , M BA

''
 , M BC

''
 , M CB

''
 , M CD

''
 and  M DC

''
 are the 

 
balanced moment obtained by distributing the fixed end moments due to 

assumed sidesway ' at joints B and C . Now, from statics calculate horizontal 

force F due to arbitrary sidesway ' . 

 
 
 
 
 
 

 



H
 A2 = 

 M '' +M 
''
 

 

 AB BA  
 

 h2  

   
 

H
 D2 

  M '' +M 
''
 

 

= 

 CD DC 
 

  h1  

     

 

F = (H A2  + H D2 ) 
 
 
 

 

In Fig 21.2, by method of superposition 

 

kF = R  or k = R / F 

 

Substituting the values of R and F from equations (21.2) and (21.4), 
 

 

k = 

P −(H A1 + H D1 )         
 

  (H A2 +H D2 )         
 

Now substituting the values of H A1 , H A2 , H D1 and H D2  in 21.5, 
 

 M ' 
AB + M ' 

BA  Pa  M 'CD +M 'DC 
 

 
 

        
 

       

    

h 
  

+ h 
 

+ 
 

h 
 

 P −   
2 

    
 

k = 
     2     1    

 

M '' 
AB + M '' 

BA          
 

    + 
M

 
''
CD 

+M
 
''
DC 

 

 

 

              

 

 

    

h2 
       

h1 
 

 

             
 

 
Hence, beam end moment in the original structure is obtained as, 

 

M
 original  

=
 

M
 system(b) 

+
 

kM
 system(c) 

 
 
 
 
 
 
 

(21.3) 
 

 

(21.4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(21.5) 
 
 
 
 
 
 
 

 

(21.6) 

 
If there is more than one independent member rotation, then the above 

procedure needs to be modified and is discussed in the next lesson. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example 1  
Analyse the rigid frame shown in Fig 21.4a. Assume EI to be constant for all 

members. Also sketch elastic curve. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution  
In the given problem, joint C can also rotate and also translate by an unknown 

amount . This problem has to be solved in two steps. In the first step, evaluate 

the beam-end moment by preventing the sidesway. 
 
In the second step calculate beam end moments by moment-distribution method 

for known translation (see Fig 21.4b). By appropriately superposing the two 

results, the beam end moment of the original structure is obtained. 

 
a) Calculate stiffness and distribution factors 
 

KBA = 0.333EI ; K BC  = 0.25EI ; 

 

KCB  = 0.25EI ; KCD  = 0.333EI 

 

Joint B :  ∑K =0.583EI 

 

DFBA = 0.571; DFBC  = 0.429 

 

Joint C :  ∑K =0.583EI 
 



DFCB  = 0.429 ; DFCD  = 0.571 . (1) 
 

b) Calculate fixed end moment due to applied loading. 

 

M AB
F
 =0 ; M BA

F
 =0 kN.m  

M BC
F
 = +10 kN.m ; M CB

F
 = −10 kN.m  

M CD
F
 =0 kN.m ; M DC

F
 =0 kN.m . (2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now the frame is prevented from sidesway by providing a support at C as shown 

in Fig 21.4b (ii). The moment-distribution for this frame is shown in Fig 21.4c. Let 
 
M ' AB , M 'BA , M 'CD and M 'DC   be  the  balanced  end  moments.  Now  calculate 
 
horizontal reactions at A and D from equations of statics. 
 
 

H A1  = 
M 'AB + M 'BA    

 

3 
   

 

    
 

=  −3.635 + 7.268  
 

 3    
 

= −3.635 KN (→) .  
 

H D1   = 
 3.636 −17.269  

= 3.635 kN(←) . 
 

3 
  

 

    
 

 
 



R =10 − (−3.635 + 3.635) =−10 kN(→) (3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

d) Moment-distribution for arbitrary known sidesway   ' .     
 

Since  ' is arbitrary, Choose any convenient value. Let ' = 
150  

Now calculate   

EI  

 

fixed end beam moments for this arbitrary sidesway. 
   

 

     
 

M AB
F
 = − 6EIψ  = − 6 EI ×(− 150 ) = 100 kN.m  

 

L 

   
 

  3  3EI      
 

M BA
F
 =100 kN.m           

 

M CD
F
 = M DC

F
 = +100 kN.m       (4) 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The moment-distribution for this case is shown in Fig 24.4d. Now calculate 
 

horizontal reactions H A2 and H D2 .  
 

H
 A2 = 

52.98 + 76.48  
= 43.15 kN(←) 

 

3  
 

     

H
 D2 = 

 52.97 + 76.49 
= 43.15 kN(←) 

 

3  
 

    
 

 

F = −86.30 kN(→) 
 



 
Let k be a factor by which the solution of case ( iii ) needs to be multiplied. Now 

actual moments in the frame is obtained by superposing the solution ( ii ) on the 

solution obtained by multiplying case ( iii ) by k . Thus kF cancel out the holding 

force R such that final result is for the frame without holding force. 

 
Thus, k F = R . 

 

k = 
−10 

= 0.1161 (5)  

−86.13 
 

   
 

Now the actual end moments in the frame are,  
 

M AB  = M 'AB +k M ''AB  
 

M AB = − 3.635 + 0.1161( + 76.48) = +5.244 kN.m 
 

M BA = −7.268 + 0.1161( +52.98) = −1.117 kN.m 
 

M BC = +7.268 + 0.1161( − 52.98) = +1.117 kN.m 
 

MCB = − 7.269 + 0.1161( −52.97) = −13.419 kN.m 
 

MCD = + 7.268 + 0.1161( +52.97) = +13.418 kN.m 
 

M DC = +3.636 + 0.1161( +76.49) = +12.517 kN.m 
 

 
 
The actual sway is computed as, 
 

= k ' = 0.1161×
150

EI  

 

= 
17

EI
.415

  

 

The joint rotations can be calculated using slope-deflection equations. 
 

 

M AB  = M AB
F
 + 

 2EI [2θA +θB −3ψ AB ] where ψ AB  = − 
 

 

   

L 
 

  L  
 

M BA = M BA
F
 + 

2EI [2θ B +θA −3ψ AB ]   
 

   
 

  L   
 



 

 

In the above equation, except θA and θB all other quantities are known. Solving 

for θA and θB , 
 

θA = 0 ; θB = 
−9.55 

.   
 

   EI 
  

The elastic curve is shown in Fig. 21.4e. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Example 2  
Analyse the rigid frame shown in Fig. 21.5a by moment-distribution method. The 

moment of inertia of all the members is shown in the figure. Neglect axial 

deformations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution:  
In this frame joint rotations B and C and translation of joint B and C need to be 

evaluated. 

 
a) Calculate stiffness and distribution factors. 
 

K
 BA = 0.333EI ; K BC  = 0.25EI 

K
CB = 0.25EI ; KCD  = 0.333EI 

At joint B : 
 

∑K = 0.583EI 

 

DFBA = 0.571 ; DFBC  = 0.429 

 

At joint C : 
 

∑K = 0.583EI 
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DFCB  = 0.429 ; DFCD  = 0.571 

 

b) Calculate fixed end moments due to applied loading. 
 

M 
F
 = 12 × 3 ×3

2
 = 9.0 kN.m ; M 

F
 = −9.0  kN.m 

AB  6
2
  BA   

M BC
F
 = 0 kN.m ;  MCB

F
 = 0 kN.m 

MCD
F
 = 0 kN.m ;  M DC

F
 = 0 kN.m 

 

c) Prevent sidesway by providing artificial support at C . Carry out moment-

distribution ( i.e. Case A in Fig. 21.5b). The moment-distribution for this case is 

shown in Fig. 21.5c. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now calculate horizontal reaction at A and D from equations of statics. 

 

 H A1 = 11.694 −3.614 +6 = 7.347 kN ( ← )    
 

   6       
 

 HD1 = − 1 . 154 −0.578 = −0.577 kN ( → )    
 

   3   

kN (→) 

   
 

 R = 12 − (7.347 − 0.577) = −5.23    
 

d) Moment-distribution for arbitrary sidesway ' (case B, Fig. 21.5c) 
 

Calculate fixed end moments for the arbitrary sidesway of ' = 150 .  

  

        EI 
 

M AB
F
 = − 6 E (2 I ) ψ = 12 EI × ( − 

150
 ) = +50 kN.m  ; M BA

F
 = +50  kN.m  ; 

 

 L 6 6EI       
 

 
 
 

 



M CD
F
 = − 

6 E ( I ) 
ψ = − 

6 EI 
× ( − 

150 
) = +100  kN.m  ; M DC

F
 = +100  kN.m  ;  

L 3 

 
 

   3EI  
  

The moment-distribution for this case is shown in Fig. 21.5d. Using equations of 

static equilibrium, calculate reactions H A2 and H D2 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

H 

 

H 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A2 
 
 
D2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 
32.911 + 41.457 

=12.395 kN (←)  

6 
 

 

   
 

= 
46.57 + 73.285  

=39.952 kN (←)  

3 
 

 

   
 

 

F = −(12.395 + 39.952) = −52.347 kN (→) 

 

e) Final results 

 

Now, the shear condition for the frame is (vide Fig. 21.5b) 
 
 
 

 



(H A1 + H D1 ) + k(H A2 + H D2 ) =12 

(7.344 −0.577) + k(12.395 + 39.952) 

=12 k = 0.129 

 
Now the actual end moments in the frame are, 
 

M AB  = M 'AB +k M ''AB   

M AB = 11.694 + 0.129( +41.457) = +17.039 kN.m 

M BA = −3.614 + 0.129( + 32.911) = 0.629 kN.m 

M BC = 3.614 + 0.129( −32.911) = −0.629 kN.m 

MCB = −1.154 + 0.129( − 46.457) = −4.853 kN.m 

MCD = −1.154 + 0.129( +46.457) = +4.853 kN.m 

M DC = −0.578 + 0.129( + 73.285) = +8.876 kN.m 
 
 
The actual sway 

 

= k  ' = 0.129 ×
150

EI  

 

= 
19

EI
.35

  

 

The joint rotations can be calculated using slope-deflection equations. 
 

M AB − M AB
F
  = + 

 2E(2I ) [2θA +θB −3ψ ]          
 

           
 

or 
   L                       

 

                          
 

[2θ A +θB ]= 
L   F     12EIψ   L   F   12EIψ 

 

 M
 AB − M AB + 

    

 

= 
    

M AB − M AB − 
   

 

 

4EI 
  

L 
  

4EI 
 

L 
 

 

                     
 

[2θ B +θA ]= 
L   F    12EIψ   L   F 12EIψ 

 

 M
 BA −

 
M

 BA + 
    

 
= 

    

M BA − M BA − 
    

 

 

4EI 
   

L 4EI 
   

L 
 

                  
 

 M AB = +17.039   kN.m                 
 

 



 

     M BA = 0.629  kN.m   
 

     ( M AB
F )= 9 + 0.129(50) =15.45  kN.m 

 

     ( M BA
F )= − 9 + 0.129(50) = −2.55 kN.m 

 

   
change  in  near end 

 
+ 

 1 
in  far  end      

- change 
 

θA = 
         2  

 

       

3EI L 
  

 

            
 

    
(17.039 − 15.45) + 

 
− 

1    
 

     

2 
(0.629 + 2.55)  

 

  
= 

        
= 0.0  

     

3EI 6 

   
 

   
4.769 

      
 

θ 
B 

=          
 

   
EI 

        
 

            
 

 
Example 3  
Analyse the rigid frame shown in Fig. 21.6a. The moment of inertia of all the 

members are shown in the figure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Solution:  
a) Calculate stiffness and distribution factors 
 

K
 BA 

=
 
2EI 

= 0.392EI ; K BC  = 0.50EI 
 

5.1  

    
 

KCB  = 0.50EI ; KCD  = 0.392EI 
 

 

 

At joint B : 
 

∑K = 0.892EI 

 

DFBA = 0.439 ; DFBC  = 0.561 

 

At joint C : 
 

∑K = 0.892EI 

 

DFCB  = 0.561 ; DFCD  = 0.439 (1) 
 
 
 
b) Calculate fixed end moments due to applied loading. 
 

 

M AB
F
 = M BA

F
 = M CD

F
 = M DC

F
 = 0 kN.m 

M BC
F
 = 2.50 kN.m  

MCB
F
 = −2.50 kN.m (2) 

 

c) Prevent sidesway by providing artificial support at C . Carry out moment-

distribution for this case as shown in Fig. 21.6b. 

 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now calculate reactions from free body diagram shown in Fig. 21.5d. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Column AB 
 
 
 
 
 

 

Column CD 
 
 
 
 
 

 

Beam BC 
 
 
 
 
 
 
 
 
 
 
Thus from (3) 
 
 

from (4) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
H

A1 
 
H

D1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑M A = 0 ⇒ 5 H A1 + 1.526 + 0.764 + V1 = 0 
 

5 H A1 + V1 = −2.29 (3) 

∑M D = 0 ⇒ 5 H D1 − 1.522 − 0.762 − V2 = 0  

5 H D1 − V2  = 2.284 (4) 

∑M C = 0 ⇒ 2V1 + 1.522 − 1.526 − 10 × 1 = 0  

V1 = 5.002 kN (↑)  

V2  = 4.998 kN (↑) (5) 

= −1.458 kN (→)  

=1.456 kN (←) (6) 
 
 
 



∑FX  = 0 
H

 A1 + H D1 + R −5 = 0 
(7) 

 

 

R = +5.002  kN ( ← ) 
 

  
 

 

d) Moment-distribution for arbitrary sidesway  ' . 
 

Calculate fixed end beam moments for arbitrary sidesway of 
 

' = 
12

EI
.75

 

 

The member rotations for this arbitrary sidesway is shown in Fig. 21.6e. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ψ
AB = 

 BB" 
= − 1 ; 

   
1 

=
 ' 

= 
5.1  ' 

 

        

cos α 
 

 

    
L

 AB    
L

AB      5 
 

2  

=
 2  '  

= 0.4  ' 
          

 

              
 

 5                 
 

ψ
AB = − 

5 

'
 ( clockwise) ;ψCD = − ' ( clockwise) 

 

              5     
 ψ

BC =   2 = 2 ' tan α = ' ( counterclockwise)  

   

2 
  

5 
 

    2              
 

 
 

M AB
F
 = − 

 6 EI 
AB ψAB = − 

6 E (2 I ) 
− 

12.75  
=+6.0 kN.m 

 

  

5.1 

 

 

5EI 

 

 

 

     
 

   
L

AB        
 

M BA
F
 = +6.0 kN.m          

 

M BC
F
 = − 

 6 EI 
BC ψBC = − 

6E ( I )  12.75 
= −7.65 kN.m 

 

  

2 

 

  

 

 

     
 

   
L

BC 5EI     
 

MCB
F
 = −7.65 kN.m          

 

MCD
F
 = − 

 6 EI 
CD ψCD = − 

6 E (2I ) 
− 

12.75  
= +6.0 kN.m 

 

  

5.1 

 

5EI 

 

 

   
 

   
L

CD       
 

M DC
F
 = +6.0 kN.m          

 

 

The moment-distribution for the arbitrary sway is shown in Fig. 21.6f. Now 

reactions can be calculated from statics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Column AB 
 
 
 
 
 
 
 
Column CD 
 
 
 
 
 
 
 

 

Beam BC 
 
 
 
 

 

Thus from 3 
 
 

from 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑M A = 0 ⇒ 5 H A 2 − 6.283 − 6.567 + V1 = 0 
 

5 H A1 + V1 =12.85 (3) 
 
 
 
 

∑M D = 0 ⇒ 5 H D 2 − 6.567 − 6.283 − V2 = 0 

5 H D1 − V2  =12.85 (4) 
 
 
 
 

∑M C = 0 ⇒ 2V1 + 6.567 + 6.567 = 0 
 

V1 = − 6.567  kN (↓);V2  = + 6.567  kN (↑) (5) 

HA2 =+3.883  kN (←)  

HD2 = 3.883 kN ( ← ) (6) 
 
 
 
 



F = 7.766 kN (←)  (7) 
 

e) Final results    
 

k F = R    
 

k = 5.002  = 0.644   
 

    

7.766     
 

Now the actual end moments in the frame are,   
 

M AB  = M 'AB +k M ''AB   
 

M AB = −0.764 + 0.644( +6.283) = +3.282 kN.m 
 

M BA = − 1.526 + 0.644( + 6.567) = 2.703 kN.m 
 

M BC = 1.526 + 0.644( −6.567) = −2.703 kN.m 
 

MCB = −1.522 + 0.644( − 6.567) = −−5.751  kN.m 
 

MCD = 1.522 + 0.644(6.567) = 5.751 kN.m 
 

M DC = 0.762 + 0.644(6.283) = 4.808 kN.m 
 

 
 









 



 

 



 



 



 



 



 



 



 



 



 



 



 



 



 



 
 
 

36.1 Introduction 
 
The building frames are the most common structural form, an analyst/engineer 
encounters in practice. Usually the building frames are designed such that the 
beam column joints are rigid. A typical example of building frame is the reinforced 
concrete multistory frames. A two-bay, three-storey building plan and sectional 
elevation are shown in Fig. 36.1. In principle this is a three dimensional frame.  
However, analysis may be carried out by considering planar frame in two 
perpendicular directions separately for both vertical and horizontal loads as 
shown in Fig. 36.2 and finally superimposing moments appropriately. In the case 
of building frames, the beam column joints are monolithic and can resist bending 

moment, shear force and axial force. The frame has 12 joints ( j ), 15 beam  

members (b), and 9 reaction components (r).  

 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Analysis of Building Frames to Vertical Loads 
 
Consider a building frame subjected to vertical loads as shown in Fig.36.3. Any 

typical beam, in this building frame is subjected to axial force, bending moment 

and shear force. Hence each beam is statically indeterminate to third degree and 

hence 3 assumptions are required to reduce this beam to determinate beam. 
 
Before we discuss the required three assumptions consider a simply supported 

beam. In this case zero moment (or point of inflexion) occurs at the supports as 

shown in Fig.36.4a. Next consider a fixed-fixed beam, subjected to vertical loads 

as shown in Fig. 36.4b. In this case, the point of inflexion or point of zero moment 
occurs at 0.21L from both ends of the support. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now consider a typical beam of a building frame as shown in Fig.36.4c. In this 

case, the support provided by the columns is neither fixed nor simply supported.  
For the purpose of approximate analysis the inflexion point or point of zero 
 0 + 0.21L 

≈ 0.1L 
 

 

moment is assumed to occur at   
 from the supports. In reality  

 

2 
 

     
 

the point of zero moment varies depending on the actual rigidity provided by the 

columns. Thus the beam is approximated for the analysis as shown in Fig.36.4d. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



For interior beams, the point of inflexion will be slightly more than 0.1L . An 

experienced engineer will use his past experience to place the points of inflexion 

appropriately. Now redundancy has reduced by two for each beam. The third 

assumption is that axial force in the beams is zero. With these three assumptions 

one could analyse this frame for vertical loads. 
 
Example 1 
 
Analyse the building frame shown in Fig. 36.5a for vertical loads using 

approximate methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: 

In this case the inflexion points are assumed to occur in the beam at 0.1L(= 0.6m)  
from columns as shown in Fig. 36.5b. The calculation of beam moments is 

shown in Fig. 36.5c. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Now the beam −ve moment is divided equally between lower column and upper 

column. It is observed that the middle column is not subjected to any moment, as 

the moment from the right and the moment from the left column balance each  

other. The  −ve moment in the beam  BE is 8.1kN.m . Hence this moment is 
 

divided between column BC and BA . Hence, M BC  = M BA = 
8.1 

= 4.05kN.m . The 
 

2   

    
 

maximum + ve moment in beam BE is 14.4 kN.m . The columns do carry axial  
loads. The axial compressive loads in the columns can be easily computed. This 

is shown in Fig. 36.5d. 
 
 

Analysis of Building Frames to lateral (horizontal) Loads 
 
A building frame may be subjected to wind and earthquake loads during its life 

time. Thus, the building frames must be designed to withstand lateral loads. A 

two-storey two-bay multistory frame subjected to lateral loads is shown in Fig.  
36.6. The actual deflected shape (as obtained by exact methods) of the frame is 

also shown in the figure by dotted lines. The given frame is statically 

indeterminate to degree 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Hence it is required to make 12 assumptions to reduce the frame in to a statically 

determinate structure. From the deformed shape of the frame, it is observed that 

inflexion point (point of zero moment) occur at mid height of each column and 

mid point of each beam. This leads to 10 assumptions. Depending upon how the 

remaining two assumptions are made, we have two different methods of 
analysis: i) Portal method and ii) cantilever method. They will be discussed in the  
subsequent sections. 
 

Portal method 
 
In this method following assumptions are made.  
1) An inflexion point occurs at the mid height of each column.  
2) An inflexion point occurs at the mid point of each girder.  
 
 



3) The total horizontal shear at each storey is divided between the columns of 

that storey such that the interior column carries twice the shear of exterior 
column.  
The last assumption is clear, if we assume that each bay is made up of a portal 
thus the interior column is composed of two columns (Fig. 36.6). Thus the interior 
column carries twice the shear of exterior column. This method is illustrated in 

example 36.2. 
 
Example 3 
 
Analyse the frame shown in Fig. 36.7a and evaluate approximately the column 

end moments, beam end moments and reactions. 
 
Solution:  
The problem is solved by equations of statics with the help of assumptions made 

in the portal method. In this method we have hinges/inflexion points at mid height 

of columns and beams. Taking the section through column hinges M .N , O we  
get, (ref. Fig. 36.7b). 
 

∑FX  = 0     ⇒  V + 2V +V = 20 

 

or V = 5 kN  
Taking moment of all forces left of hinge R about R gives, 
 

V ×1.5 − M y ×2.5 = 0  

M y = 3 kN(↓) 

 

Column and beam moments are calculates as, 
 

M CB  = 5 ×1.5 = 7.5 kN.m ; M IH  = +7.5 kN.m 
 
 

M CF  = −7.5 kN.m 

 

Taking moment of all forces left of hinge S about S gives, 
 

5 ×1.5 −Oy ×2.5 = 0 

 

Oy  = 3kN(↑ ) 
 
 

N y  = 0 

 

Taking a section through column hinges J , K, L we get, (ref. Fig. 36.7c). 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑FX  = 0     ⇒  V '+2V '+V ' = 60 

 

or V ' =15  kN 
 

 



Taking moment of all forces about P gives (vide Fig. 36.7d) 
 

∑M p = 015 × 1.5 + 5 × 1.5 + 3 × 2.5 − J y × 2.5 = 0 

J y = 15 kN ( ↓ ) 

Ly = 15 kN ( ↑ ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Column and beam moments are calculated as, (ref. Fig. 36.7f) 
 

M BC = 5×1.5 = 7.5 kN.m ; M BA =15×1.5 = 22.5 kN.m 

 

M BE  = −30 kN.m 

 

M EF  =10 ×1.5 =15 kN.m ; M ED = 30 ×1.5 = 45 kN.m 

 

M EB = −30 kN.m    M EH  = −30 kN.m 

 

M HI  = 5 ×1.5 = 7.5 kN.m ; M HG  =15 ×1.5 = 22.5 kN.m 

 

M HE  = −30 kN.m 

 

Reactions at the base of the column are shown in Fig. 36.7g. 
 

 

Cantilever method 
 
The cantilever method is suitable if the frame is tall and slender. In the cantilever 

method following assumptions are made.  
1) An inflexion point occurs at the mid point of each girder.  
2) An inflexion point occurs at mid height of each column.  
3) In a storey, the intensity of axial stress in a column is proportional to its 
horizontal distance from the center of gravity of all the columns in that storey. 
Consider a cantilever beam acted by a horizontal load P as shown in Fig. 36.8. In 
such a column the bending stress in the column cross section varies linearly from 
its neutral axis. The last assumption in the cantilever method is based on this 
fact. The method is illustrated in example 36.3.  
 
 
 
 
 
 



Example 4 
 
Estimate approximate column reactions, beam and column moments using 

cantilever method of the frame shown in Fig. 36.8a. The columns are assumed to 

have equal cross sectional areas. 
 
Solution:  
This problem is already solved by portal method. The center of gravity of all 

column passes through centre column. 

x = 

∑xA
 = 

(0
 

)A
 
+5A

 
+10A

 = 5 m (from left column)  

∑ A A + A + A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Taking a section through first storey hinges gives us the free body diagram as 

shown in Fig. 36.8b. Now the column left of C.G. i.e. CB must be subjected to 

tension and one on the right is subjected to compression.  
From the third assumption, 
 

M y 
= − 

Oy 
⇒M y  = −Oy 

 

5 × A 5 × A  

  
 

 
Taking moment about O of all forces gives, 
 

20 ×1.5 − M y ×10 = 0 

 

M y  = 3kN(↓ ) ; Oy  = 3 kN(↑ ) 

 

Taking moment about R of all forces left of R , 
 
 
 
 



VM × 1.5 − 3 × 2.5 = 0 

 

VM  = 5  kN ( ← ) 
 

 

Taking moment of all forces right of S about S , 

 

VO ×1.5 −3×2.5 = 0  ⇒  VO  = 5 kN.  

∑FX  = 0     VM +VN +VO −20 = 0 

 

VN  =10 kN. 

 

Moments 
 

MCB = 5×1.5 = 7.5 kN.m 

 

MCF = −7.5 kN.m 

 

M FE  =15 kN.m 
 
 

M FC  = −7.5 kN.m 
 
 

M FI  = −7.5 kN.m 
 
 

M IH  = 7.5 kN.m 
 
 

M IF  = −7.5 kN.m 
 
 
 
Tae a section through hinges J , K, L (ref. Fig. 36.8c). Since the center of gravity 

passes through centre column the axial force in that column is zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Taking moment about hinge L , J y can be evaluated. Thus, 

 

20 ×3 + 40 ×1.5 + 3 ×10 − J y ×10 = 0 
 

J y =15kN(↓) ;    Ly =15kN(↑) 
 
 
 
Taking moment of all forces left of P about P gives, 
 

5×1.5 +3×2.5 −15 ×2.5 +Vj ×1.5 = 0 

 

VJ  =15 kN(← ) 

 

Similarly taking moment of all forces right of Q about Q gives, 

 

5×1.5 +3×2.5 −15×2.5 +VL ×1.5 = 0 
 

VL =15kN(←) 

 

∑FX  = 0     VJ + VK + VL −60 = 0 

 

VK = 30  kN. 
 
 
 

 



Moments 
 

M BC = 5 × 1.5 = 7.5 kN.m ; M BA = 15 × 1.5 = 22.5 kN.m 

M BE = −30  kN.m     

M EF = 10 × 1.5 =15 kN.m ; M ED = 30 × 1.5 = 45 kN.m 

M EB = −30  kN.m 
M

 EH = −30  kN.m  

M HI = 5 × 1.5 = 7.5 kN.m ; M HG = 15 × 1.5 = 22.5 kN.m 

M HE = −30  kN.m     
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