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N.B.K.R INSTITUTE OF SCIENCE & TECHNOLOGY, VIDYANAGAR

UNIT-II
INFLUENCE LINES

1.1 INTRODUCTION

Common sense tells us that when a load moves over a structure, the deflected shape of
the structural will vary. In the process, we can arrive at simple conclusion that due to
moving load position on the structure, reactions value at the support also will vary.

From the designer’s point of view, it is essential to have safe structure, which doesn’t
exceed the limits of deformations and also the limits of load carrying capacity of the
structure.

1.2 DEFINITIONS OF INFLUENCE LINE

In the literature, researchers have defined influence line in many ways. Some of the
definitions of influence line are given below.

e An influence line is a diagram whose ordinates, which are plotted as a function of
distance along the span, give the value of an internal force, a reaction, or a
displacement at a particular point in a structure as a unit load move across the
structure.

e An influence line is a curve the ordinate to which at any point equals the value of
some particular function due to unit load acting at that point.

e An influence line represents the variation of the reaction, shear, moment, or
deflection at a specific point in a member as a unit concentrated force moves over the
member.

1.3 CONSTRUCTION OF INFLUENCE LINES

In this section, we will discuss about the construction of influence lines. Using any one of
the two approaches (Figure 37.1), one can construct the mfluence line at a specific point
P in a member for any parameter (Reaction, Shear or Moment). In the present approaches
it is assumed that the moving load is having dimensionless magnitude of unity.
Classification of the approaches for construction of influence lines is given in Figure
below

Construction of Influence Lines

v ¥
Tabulate Values Influence Line-Equation
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1.3.1 Tabulate Values

Apply a unit load at different locations along the member, say at x. And these
locations, apply statics to compute the value of parameter (reaction, shear, or moment)
at the specified point. The best way to use this approach is to prepare a table, listing
unit load at x versus the corresponding value of the parameter calculated at the specific
point (i.e. Reaction R, Shear V or moment M) and plot the tabulated values so that
influence line segments can be constructed.

1.3.2 Sign Conventions

Sign convention followed for shear and moment is given below.

Parameter Sign for influence line
Reaction R Positive at the point when it acts upward on the beam.

Shear V Positive for the following case

By |

Moment M Positive for the fo| v |g case

S Cl

1.3.3 Influence Line Equations

Influence line can be constructed by deriving a general mathematical equation to compute
parameters (e.g. reaction, shear or moment) at a specific point under the effect of moving
load at a variable position x.

The above discussed both approaches are demonstrated with the help of simple numerical
examples in the following paragraphs.

1.3.4 Getting Influence Line Equation
An influence line for a given function, such as a reaction, axial force, shear force, or

bending moment, is a graph that shows the variation of that function at any given point
on a structure due to the application of a unit load at any point on the structure.
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1.4 SIMPLY SUPPORTED BEAMS
1.4.1 Load Categories
We can consider 5 categories of loads on beams
1. Concentrated Loads
a. Single point load
b. Two point load
c. Multi point load
2. udl longer than the beam span
3. udl shorter than the beam span
4. Equivalent uniformly distributed load(EUDL)

1.5 CONCENTRATED LOADS

a) Single Point Load:
Reactions in a SSB

External forces like reactions are the easiest force components for which
influence lines can be sketched easily.

W=1
le
AN ?B
.1L
Rale 2 > ol Ry
(a)
Ry= I-a
0
(b)
a
a HI!'T

(c)
Let us try to get IL for Ra for the beam AB in fig (a).Let a unit load act at P at a
distance ‘a’ from A. Then Ro & Rg
(l—a)
{

R, =

a
Ra=1
ILD for Internal Shear & Bending moment in a SSB
Let us investigate the SF & BM at X at a distance ‘x’ from A. Let ‘a’ be the
coordinate position of a unit load.

Shear force
Fora<x

F,=R,-1=
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Foras>x
(I-a)
FI= R_,,.= 7
Bending moment
Fora<x
M, = Ry x(I-2) =  (-x)
Forasx
M= R,X M=,
W=1
. a - i
A 4 X : a
I ]
pAY E £
- X . 1
E a >
™ ! f-‘-:
(a)
-2 k.
! \W
Q\-I'\l I-a)
(b) !
M‘zﬂl-l xll = x
-
© M.J a)x
Examples

1. Construct the influence line for the reaction at support B for the beam of span 10 m.
The beam structure is shown in Figure below

Figure : The beam structure
Solution:
As discussed earlier, there are two ways this problem can be solved. Both the approaches
will be demonstrated here.

Tabulate values:
As shown in the figure, a unit load is places at distance x from support A and the reaction

value Rp is calculated by taking moment with reference to support A. Let us say, if the

load is placed at 2.5 m. from support A then the reaction Rg can be calculated as follows
(Figure).

YMa =0:RgXx(10-1)x25=0=Rg =0.25
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}-‘—X——-

yauns ey

10m =|

Figure 1 : The beam structure with unit load

Similarly, the load can be placed at 5.0, 7.5 and 10 m. away from support A and reaction
Rp can be computed and tabulated as given below.

X R
0 0.0
25 025
50 05
75 0.75
10 1

Graphical representation of influence line for Rg is shown in Figure 37.4.

Re
| 1

/

25 50 . 7.5 . 10
Figure 2: Influence line for reaction Rp.

Influence Line Equation:
When the unit load is placed at any location between two supports from support A at

distance x then the equation for reaction Rg can be written as

>Ma =0:Rgx(10-x)=0=Rp =x/10

The influence line using this equation is shown in Figure 2.
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2. Construct the influence line for support reaction at B for the given beam as shown in
below.

AN A

Solution:
As explained earlier in example 1, here we will use tabulated values and influence line
equation approach.

Figure: The overhang beam structure

Tabulate Values:

As shown in the figure, a unit load is places at distance x from support A and the reaction
value Rpg is calculated by taking moment with reference to support A. Let us say, if the
load is placed at 2.5 m. from support A then the reaction Rg can be calculated as follows.

SMa =0:RgX(7.5-1)x25=0= Rg =0.33

=~

A B e
/@//// W%

‘«— 7.5m ——{4— 50m @ ——— -

Figure 1: The beam structure with unit load

Similarly one can place a unit load at distances 5.0 m and 7.5 m from support A and
compute reaction at B. When the load is placed at 10.0 m from support A, then reaction at
B can be computed using following equation.

XMa =0:Rpx(75-1)x10.0=0=Rp =1.33

Similarly a unit load can be placed at 12.5 and the reaction at B can be computed. The
values of reaction at B are tabulated as follows.

X RB
0 0.0
25 033
5.0 0.67
7.5 1.00
10 1.33

12.5 1.67
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Graphical representation of influence line for Rg is shown in Figure 2.
Re |

Figure 2: Influence for reaction Rp.

Influence line Equation:
Applying the moment equation at A (Figure 37.6),

YXMa =0:Rpx(7.5-1)xx=0=>Rp =x/75
The influence line using this equation is shown in Figure 2.

3. Construct the influence line for shearing point C of the beam (Figure 37.8)

A ¢ B

jt——————7.5m e 7.5m ]
b=z 15m =

Figure: Beam Structure

Solution:

Tabulated Values:

As discussed earlier, place a unit load at different location at distance x from support A
and find the reactions at A and finally computer shear force taking section at C. The shear
force at C should be carefully computed when unit load is placed before point C (Figure
1) and after point C (Figure 2). The resultant values of shear force at C are tabulated as

follows.
|< X >£ 1
C
A S B
7 %ﬁ

| 7.5m ]

Figure 1: The beam structure — a unit load before section
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Figure 2 : The beam structure - a unit load before section

X Ve

0 0.0
25  -0.16
50  -0.33
75(-) -05
75(+) 05
10 0.33
125  0.16
150 0

Graphical representation of influence line for V. is shown in Figure 3.
v A

\e= 1-x/15

0.16

1
! 1
1 1

T

1

1

-0.16 U
-0.33

-0.5

Figure 3: Influence line for shear point C

Influence line equation:

In this case, we need to determine two equations as the unit load position before point C
(Figure 4) and after point C (Figure 5) will show different shear force sign due to
discontinuity. The equations are plotted in Figure 3.

S \ e
A C
e
-

= 7.5m

Ra= 1-x/15
0<x<7.5m

Figure 4: Free body diagram — a unit load before section
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7.5<x<15

Figure 5: Free body diagram — a unit load after section

Influence Line for Moment:
Like shear force, we can also construct influence line for moment.

4. Construct the influence line for the moment at point C of the beam shown in
Figure

A ¢ B
o 7.5m =t 7.5m |
be=s 15m =]

Figure: Beam structure

Solution:
Tabulated values:

Place a unit load at different location between two supports and find the support
reactions. Once the support reactions are computed, take a section at C and compute the
moment. For example, we place the unit load at x=2.5 m from support A (Figure 1), then
the support reaction at A will be 0.833 and support reaction B will be 0.167. Taking

section at C and computation of moment at C can be given by

XM =0:-M¢c+Rpx75-=0=>-M+0.167x75-=0=>M:=1.25

-— —r
[ 65
A S B

fe 7.5m |
Figure 1: A unit load before section

Similarly, compute the moment M . for difference unit load position in the span. The

values of Mc are tabulated as follows.
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~ =

C
0 0. I
25 jéﬁ
I 504,725 T
75 3.75 |
RA= 1-x/15 10 25
2 Eexgl5 125  1.25
150 O

Graphical representation of influence line for M¢ is shown in Figure 2.

ve A

Mc =x/2 Mc=7.5-X/2

0 15

7.5
Figure 2: Influence line for moment at section C

Influence Line Equations:
There will be two influence line equations for the section before point C and after point
C.

When the unit load is placed before point C then the moment equation for given Figure 3
can be given by

XMc =0:M¢ +1(7.5-X) — (1-x/15)x7.5=0 = Mc =x/2, where 0 <x < 7.5

b s \ e
A C
e
-

RA= 1 ‘X/1 5
0<x<7.5m

Figure 3: Free body diagram - a unit load before section

When the unit load is placed after point C then the moment equation for given
Figure 4 can be given by

YXM; =0:M¢ —(1-x/15) x 7.5=0= M¢ = 7.5 - x/2, where 7.5 <x < 15.0
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i X =1

DCl

m —l—

Ra= 1-x/15

7.5<x<15
Figure 4: Free body diagram - a unit load before section

The equations are plotted in Figure 2

5. Construct the influence line for the moment at point C of the beam shown in Figure

A C B D
10 et 5 =

Figure: Overhang beam structure

Solution:

Tabulated values:

Place a unit load at different location between two supports and find the support
reactions. Once the support reactions are computed, take a section at C and compute the
moment. For example as shown in Figure 37.20, we place a unit load at 2.5 m from
support A, then the support reaction at A will be 0.75 and support reaction B will be 0.25.

je— X 1

PO
vs)

A

7 7
Figure 1: A unit load before section C

Taking section at C and computation of moment at C can be given by
ZMC :0:‘Mc+RBX5.0':O:'Mc+o.25X5.0 :0$M0:1.25

Similarly, compute the moment M for difference unit load position in the span.
The values of Mc are tabulated as follows.
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X Mg
0 0

2.5 1.25
5.0 2.5
7.5 1.25
10 0
12.5 -1.25
15.0 -2.5

Graphical representation of influence line for M¢ is shown in Figure 2.

McA s
Mc=x/2
M, =5-1/2x

S ——

I
I
I
I
I
I
I
I
1
5

10 : 15
I
I

Figure 2: Influence line of moment at section C

Influence Line Equations:
There will be two influence line equations for the section before point C and after point
C.

When a unit load is placed before point C then the moment equation for given Figure 3
can be given by

XMc =0:Mc +1(5.0x) - (1-x/10)x5.0 =0 = M = x/2, where 0 <x < 5.0

A C B

Figure 3: A unit load before section C

When a unit load is placed after point C then the moment equation for given Figure 4 can
be given by

XMc =0:Mc —(1-x/10) x5.0=0= M =5-x/2, where 5 <x <15
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ot X 1
A C B D
@A %A
(it X
A ‘f D

) B
42 7 @A
Figure 4: A unit load after section C

The equations are plotted in Figure 2.

6. A Single rolling load of 100 kN moves on a girder of span 20m
(@) Construct the influence lines for
(i) Shear force and (ii) bending moment for a section 5m from the left support.
(b) Construct the influence lines for points at which the maximum shears and

maximum bending moment develop. Determine these maximum values.
Solution:

*

f— 5 m —»ie 15m »

a) To find maximum shear force and bending moment at 5m from the left support:
For the ILD for shear,

i-x_20-5

= = 0.75
IL ordinate to the rightof D= ¢ 20
x b
. > =— =025
IL ordinate to the leftof D= ¢ 20
x(l-x) _5x15 $.75 m
For the IL for bending moment, IL ordinateat D = ¢ 20 B

I.  Maximum positive shear force
By inspection of the ILD for shear force, it is evident that maximum positive

shear force occurs when the load is placed just to the right of D
Maximum positive shear force = load x ordinate = 100 x 0.75 =75N
At D, SFmax + =75 kN




UNIT-1
SLOPE DEFLECTION METHOD

INTRODUCTION

As pointed out earlier, there are two distinct methods of analysis for statically
indeterminate structures depending on how equations of equilibrium, load
displacement and compatibility conditions are satisfied: 1) force method of
analysis and (2) displacement method of analysis. In the last module, force
method of analysis was discussed. In this module, the displacement method of
analysis will be discussed. In the force method of analysis, primary unknowns are
forces and compatibility of displacements is written in terms of pre-selected
redundant reactions and flexibility coefficients using force displacement relations.
Solving these equations, the unknown redundant reactions are evaluated. The
remaining reactions are obtained from equations of equilibrium.

As the name itself suggests, in the displacement method of analysis, the primary
unknowns are displacements. Once the structural model is defined for the
problem, the unknowns are automatically chosen unlike the force method. Hence
this method is more suitable for computer implementation. In the displacement
method of analysis, first equilibrium equations are satisfied. The equilibrium of
forces is written by expressing the unknown joint displacements in terms of load
by using load displacement relations. These equilibrium equations are solved for
unknown joint displacements. In the next step, the unknown reactions are
computed from compatibility equations using force displacement relations. In
displacement method, three methods which are closely related to each other will
be discussed.

1) Slope-Deflection Method
2) Moment Distribution Method

Degrees of freedom

In the displacement method of analysis, primary unknowns are joint
displacements which are commonly referred to as the degrees of freedom of the
structure. It is necessary to consider all the independent degrees of freedom
while writing the equilibrium equations.These degrees of freedom are specified at
supports, joints and at the free ends. For example, a propped cantilever beam
(see Fig.14.01a) under the action of load P will undergo only rotation at B if axial
deformation is neglected. In this case kinematic degree of freedom of the beam
is only one i.e. 65 as shown in the figure.

In Fig.14.01b, we have nodes at A,B,C and D. Under the action of lateral loads
P;, P, and P, this continuous beam deform as shown in the figure. Here axial
deformations are neglected. For this beam we have five degrees of freedom 6, ,6;
6¢c, 6p and p as indicated in the figure. In Fig.14.02a, a symmetrical plane

frame is loaded symmetrically. In this case we have only two degrees of
freedomeg andec . Now consider a frame as shown in Fig.14.02b. It has three



degrees of freedom viz. 6 ,6c and p as shown. Under the action of horizontal

and vertical load, the frame will be displaced as shown in the figure. It is
observed that nodes at B and C undergo rotation and also get displaced
horizontally by an equal amount.

Constant El , L

(a) (b)

Kinematically Determinate Structure

(c)

Moment - Rotation relation

Fig.14.2 Derivation of slope - deflection equations

Hence in plane structures, each node can have at the most one linear
displacement and one rotation. In this module first slope-deflection equations as
applied to beams and rigid frames will be discussed.

Instructional Objectives

After reading this chapter the student will be able to

1. Calculate kinematic degrees of freedom of continuous beam.

2. Derive slope-deflection equations for the case beam with unyielding supports.
3. Differentiate between force method and displacement method of analyses.

4. State advantages of displacement method of analysis as compared to force
method of analysis.

5. Analyse continuous beam using slope-deflection method.



Introduction

In this lesson the slope-deflection equations are derived for the case of a beam
with unyielding supports .In this method, the unknown slopes and deflections at
nodes are related to the applied loading on the structure. As introduced earlier,
the slope-deflection method can be used to analyze statically determinate and
indeterminate beams and frames. In this method it is assumed that all
deformations are due to bending only. In other words deformations due to axial
forces are neglected. As discussed earlier in the force method of analysis
compatibility equations are written in terms of unknown reactions. It must be
noted that all the unknown reactions appear in each of the compatibility
equations making it difficult to solve resulting equations. The slope-deflection
equations are not that lengthy in comparison.

The slope-deflection method was originally developed by Heinrich Manderla and

Otto Mohr for computing secondary stresses in trusses. The method as used
today was presented by G.A.Maney in 1915 for analyzing rigid jointed structures.

Slope-Deflection Equations

Consider a typical span of a continuous beam AB as shown in Fig.14.1.The beam
has constant flexural rigidity EI and is subjected to uniformly distributed loading
and concentrated loads as shown in the figure. The beam is kinematically
indeterminate to second degree. In this lesson, the slope-deflection equations
are derived for the simplest case i.e. for the case of continuous beams with
unyielding supports. In the next lesson, the support settlements are included in
the slope-deflection equations.

WP

Fig. 14.01

For this problem, it is required to derive relation between the joint end moments
M ag and M ga in terms of joint rotations 6, and 6z and loads acting on the

beam .Two subscripts are used to denote end moments. For example, end
moments Ms:s denote moment acting at joint A of the member AB. Rotations of the
tangent to the elastic curve are denoted by one subscript. Thus, 6, denotes

the rotation of the tangent to the elastic curve at A. The following sign
conventions are used in the slope-deflection equations (1) Moments acting at the
ends of the member in counterclockwise direction are taken to be positive. (2)
The rotation of the tangent to the elastic curve is taken to be positive when the
tangent to the elastic curve has rotated in the counterclockwise direction from its
original direction. The slope-deflection equations are derived by superimposing
the end moments developed due to (1) applied loads (2) rotation 64 (3)

rotationgg . This is shown in Fig.14.2 (a)-(c). In Fig. 14.2(b) a kinematically

determinate structure is obtained. This condition is obtained by modifying the



support conditions to fixed so that the unknown joint rotations become zero. The
structure shown in Fig.14.2 (b) is known as kinematically determinate structure or
restrained structure. For this case, the end moments are denoted by M " and M ga" .
The fixed end moments are evaluated by force—method of analysis as discussed
in the previous module. For example for fixed- fixed beam subjected to uniformly
distributed load, the fixed-end moments are shown in Fig.14.3.

P | dAhgs Lhge &3
\ e >
B o
[ - — T T,

P - e~ Yel ™,
| =y 7 Yy
gy - | o LAY
SR e 5

r Fig.14.03

The fixed end moments are required for various load cases. For ease of
calculations, fixed end forces for various load cases are given at the end of this
lesson. In the actual structure end A rotates by 64 and end B rotates by 65 . Now

it is required to derive a relation relating 6 and 6z with the end moments M 'ag and
M 'sa . Towards this end, now consider a simply supported beam acted by
moment M ag’ at A as shown in Fig. 14.4. The end moment M ag’ deflects the

beam as shown in the figure. The rotations 6x'and 6Og'are calculated from
moment-area theorem.

Mag

6y = 3EI (14.1a)

MaglL

66' = - 6E] (14.1b)

Now a similar relation may be derived if only M ga'is acting at end B (see Fig.
14.4).

6" =3El and (14.2a)
6= - —MumL (14.2b)
6El

Now combining these two relations, we could relate end moments acting at A
and B to rotations produced at A and B as (see Fig. 14.2¢)



M- L M L

= "3E1 " 6El (14.32)

6 = - (14.3b)
3El 6El

VI
Solving for M ag and  ea in terms of 65 and 63,

2El

M ‘AR :T(ZGA +6g) (14.4)

M’ 2El

BA = T(ZOB +6n) (14.5)

Now writing the equilibrium equation for joint moment at A (see Fig. 14.2).

Mag=Mpg +M'sg (14.6a)

Similarly writing equilibrium equation for joint B

F I

IVl — 1Vl T IVI
BA BA BA (14.6b)
Substituting the value of . fom equation (14.4) in  equation (14.6a) one
obtains,
g 2El
Ma=Mp + T (264 +6g) (14.7a)

r

Similarly substituting M ga from equation (14.6b) in equation (14.6b) one obtains,

2El
Mpga=M B/_\F + T(ZQB +9/_\ ) (14.7b)

Sometimes one end is referred to as near end and the other end as the far end.
In that case, the above equation may be stated as the internal moment at the
near end of the span is equal to the fixed end moment at the near end due to

external loads plus 71— times the sum of twice the slope at the near end and the

slope at the far end. The above two equations (14.7a) and (14.7b) simply
referred to as slope—deflection equations. The slope-deflection equation is
nothing but a load displacement relationship.



Application of Slope-Deflection Equations to Statically Indeterminate
Beams.

The procedure is the same whether it is applied to beams or frames. It may be
summarized as follows:

1.

5.
6.

7.

Identify all kinematic degrees of freedom for the given problem. This can
be done by drawing the deflection shape of the structure. All degrees of
freedom are treated as unknowns in slope-deflection method.

Determine the fixed end moments at each end of the span to applied load.
The table given at the end of this lesson may be used for this purpose.
Express all internal end moments in terms of fixed end moments and near
end, and far end joint rotations by slope-deflection equations.

Write down one equilibrium equation for each unknown joint rotation. For
example, at a support in a continuous beam, the sum of all moments
corresponding to an unknown joint rotation at that support must be zero.
Write down as many equilibrium equations as there are unknown joint
rotations.

Solve the above set of equilibrium equations for joint rotations.

Now substituting these joint rotations in the slope-deflection equations
evaluate the end moments.

Determine all rotations.

Example

A continuous beam ABC is carrying uniformly distributed load of 2 kN/m in
addition to a concentrated load of 20 kN as shown in Fig.14.5a. Draw bending
moment and shear force diagrams. Assume EI to be constant.

20 kN 2 KN/m

: L

2 kN/m t

~

| ‘ N
¥ ¥ ¥ ! ¥ Y : Cc

El , constant _,";x:‘; B El , constant R

= 3m Ll 3m ‘L 4m |

Fig. 14.5(a) Example 14.1

(a). Degrees of freedom
It is observed that the continuous beam is kinematically indeterminate to first
degree as only one joint rotation 6s is unknown. The deflected shape /elastic



curve of the beam is drawn in Fig.14.5b in order to identify degrees of freedom.
By fixing the support or restraining the support B against rotation, the fixed-fixed
beams area obtained as shown in Fig.14.5c.

20 kN

F 2 kN'm M a4 kKN'm M
Mo 5 T T i T oo

Fig. 14.5 ( ¢ ) Restrained Structure.

nl.'
r|1

L
r
Y

Im | 4m ‘
|

Fig. 14.5 (b) Elastic curve of the
beam with unknown displacement component

(b). Fixed end moments M ABF M BAF , M BCF and M CBF are calculated referring to the

Fig. 14. and following the sign conventions that counterclockwise moments are
positive.

MF=2x62+20x3x3% =21 kN.m
AB 12 64
Mgy = =21 KN.m

Mg = 4 x4° =5.33 kN.m
12
Mg = —5.33 KN.m (1)

(c) Slope-deflection equations

Since ends A and C are fixed, the rotation at the fixed supports is zero, 65 =6¢ =
0 . Only one non-zero rotation is to be evaluated for this problem. Now,
write slope-deflection equations for span AB and BC.

- 2El
Mag=Mpg + | (26A +68)



2El
Mag =21+ O (2)

6

Mga=-21+ 2El (265 +64)
I

4El

Mpga=-21 +TGB (3)
M gc =5.33 + ElBg (4)
Mcg = —5.33 + 0.5E16g (5)

(d) Equilibrium equations

In the above four equations (2-5), the member end moments are expressed in terms
of unknown rotation g . Now, the required equation to solve for the rotation

6g is the moment equilibrium equation at support B. The free body diagram of
support B along with the support moments acting on it is shown in Fig. 14.5d.
For, moment equilibrium at support B , one must have,

Fig. 14.5 d Free- body diagram of the joint B

ZMBZO Mpga+Mpc=0 (6)

Substituting the values of M ga and M gc in the above equilibrium equation,
~21+2E g, 4533 + EIG5 = 0
6

=1.6676g EI =15.667

o

6 = 9.398 = 9.40 (7)
El I
(e) End moments

After evaluating6s , substitute it in equations (2-5) to evaluate beam end
moments. Thus,



M

a8 = 21 +_eB
M ﬂ 9.398
A =21+ X =24.133kN.m
3 El
M El
sa= —21+ 3 (26g)
M
sa=-21+ El x2%9.4 =14 733kN.m
3 El
M 9.4
sc = 5,333 + £ El =14.733kN.m
M
e =-5333+94 xEl =063 kN.m (8)
Bl 2

(f) Reactions
Now, reactions at supports are evaluated using equilibrium equations (vide Fig.
14.5e)

20 kN
24.133 14.733 14.733 0.63
4 kN'm
' ¥ !
A""' 9 % ¥ g N, y ¥ 9
A
3 3 | 4 4am
R T- ~ > m > R R [ :‘R

Fig. 14.5 (e) Free - body diagram of two members

Ra X6 +14.733 =20 x3 -2 x6 x3 =24.133 =0
Ra = 17.567 KN(1)

RgL =16 - 1.567 = 14 433 KN(1)
14,090 —
R=8 + =11.526 KN(1)

BR 4

Rc = 8 + 3.526 = 4.47 KN(?) (9)

The shear force and bending moment diagrams are shown in Fig. 14.5f.



17.567

e 11.587
~ 11.526
+*
L
|
E S |e.ara
8.433 | ’ ’
“14.33
L 3m J_ 3m ‘ 4m |
Shear force diagram
19.418
1.5075m
!. .l g 0.5m
| . / 0.63
24.133 = X
4.874m L
14.733

Bending Moment diagram

Fig. 14.5 f. Shear force and bending moment diagram of continuous
beam ABC



Example

Draw shear force and bending moment diagram for the continuous beam ABCD
loaded as shown in Fig.14.6a.The relative stiffness of each span of the beam is

also shown in the figure.

| 10 kN | 5 kN
41 1 | | |
A :_ I L 4 " 4 L 4 Y !r Y va y D
& B G33©
Constant El T Constant EI Wl

}. 8m + Im + 3Im Im
T, N DR S (R, - S P -
n

Fig. 14.6a Continuous beam of Example 14.2

For the cantilever beam portion CD, no slope-deflection equation need to be
written as there is no internal moment at end D. First, fixing the supports at B and
C, calculate the fixed end moments for span AB and BC. Thus,

3x8,
12
M BAF =-16 kN.m

M " =10x 3 x3°= 7.5 kN.m

BC 62
Mcg = =7.5 KN.m (1)

In the next step write slope-deflection equation. There are two equations for each
span of the continuous beam.



Mag=16+__ (6g) =16 + 0.2563 EI
8
M ga = -16 + 0.565 EI

2 XZE|
Mpc =75+

(205 +6¢ ) = 7.5 +1.334E165 + 0.667E16¢
6

Mcg = —7.5 +1.334E16¢ +0.667E16 (2)
Equilibrium equations

The free body diagram of members AB , BC and joints B and C are shown in
Fig.14.6b.One could write one equilibrium equation for each joint B and C.

L | 3 4

T———
~,

Fig. 14.6 b Free - body diagrams of joints B and C along
with members

Support B,
ZMB:O Mga+Mpc=0 (3)
D Mc =0 Mg +Mcp =0 (4)
We know that Mcp =15 kN.m (5)
= Mcg = —15 kN.m (6)
Substituting the values of Mce and Meoin the above equations

for M ag, Mpa, Mpcand Mcg we get,

24.5
6 = 2001 =8.164
O = 9.704 (7)

Substituting 6 ,6c in the slope-deflection equations, we get



M 8.164
8 =16+0.25E105=16+0.25El x| =18.04 kN.m

M 8.164

Ba=-16 + 0.5E1 B = - 16 + 0.5EI x E] = -11.918 kN.m
VI
sc = 7.5 + 1.334EI x 8.164 +0.667E1( 9-704) =11.918 kN.m
El El

VI
e =-75+0.667El x2204 1 1334 1(- 21 = 15 kNm ()

El El
Reactions are obtained from equilibrium equations (ref. Fig. 14.6¢)

11.918
A8.001 \ 11.918 15

MTEYRYE i

AN , y
R,‘Tr am ,‘T “ R ’._3'"__;‘3"1_“ n

Fig. 14.6 ¢ Computation of reactions

Ra X8 —18.041-3x8 x4 +11.918 = 0
Ra =12.765 kN

Rgr = 5 - 0.514kN = 4.486 kN

ReL =11.235 kN

Rc =5 + 0.514kN =5.514 kN

The shear force and bending moment diagrams are shown in Fig. 14.6d.
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Fig. 14.6 (d) Shear force and bending moment diagram

For ease of calculations, fixed end forces for various load cases are given in Fig.
14.7.
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Fig. 14.7 Table of fixed end moments






Introduction

In this lesson, slope deflection equations are applied to solve the statically
indeterminate frames without side sway. In frames axial deformations are much
smaller than the bending deformations and are neglected in the analysis. With
this assumption the frames shown in Fig 16.1 will not side sway. i.e. the frames
will not be displaced to the right or left. The frames shown in Fig 16.1(a) and Fig
16.1(b) are properly restrained against side sway. For example in Fig 16.1(a) the
joint can’t move to the right or left without support A also moving .This is true also
for joint D .Frames shown in Fig 16.1 (c) and (d) are not restrained against side
sway. However the frames are symmetrical in geometry and in loading and
hence these will not side sway. In general, frames do not side sway if

1) They are restrained against side sway.
2) The frame geometry and loading is symmetrical

1 A

]

Fig- 16.1(a)



4
| .
_;i';
Fig- 16.1(b)

Fig- 16.1(c)



B D F H

Fig- 16.1(d)

For the frames shown in Fig 16.1, the angle y in slope-deflection equation is

zero. Hence the analysis of such rigid frames by slope deflection equation
essentially follows the same steps as that of continuous beams without support
settlements. However, there is a small difference. In the case of continuous
beam, at a joint only two members meet. Whereas in the case of rigid frames two
or more than two members meet at a joint. At joint C in the frame shown in Fig
16.1(d) three members meet. Now consider the free body diagram of joint C as
shown in fig 16.2 .The equilibrium equation at joint C is

Mo M
v M..

M., «
Fig- 16.2

ZMc:0=> Mcg+Mce +Mcp =0



At each joint there is only one unknown as all the ends of members meeting at a
joint rotate by the same amount. One would write as many equilibrium equations
as the no of unknowns, and solving these equations joint rotations are evaluated.
Substituting joint rotations in the slope—deflection equations member end
moments are calculated. The whole procedure is illustrated by few examples.
Frames undergoing sidesway will be considered in next lesson.

Example

Analyse the rigid frame shown in Fig 16.3 (a). Assume EIl to be constant for all
the members. Draw bending moment diagram and also sketch the elastic curve.

Solution

In this problem only one rotation needs to be determined i. e. 6g . Thus the
required equations to evaluate 6y is obtained by considering the equilibrium of
joint B . The moment in the cantilever portion is known. Hence this moment is

applied on frame as shown in Fig 16.3 (b). Now, calculate the fixed-end moments
by fixing the support B (vide Fig 16.3 c). Thus

SkN 10kN

4m
El

e—2m — sl 2m e 2m]

Fig- 16.3 a Example 16.1



SkN 10kN

=
LT T

Fig- 16.3 b Moment at joint
B due to overhang

: l 10kN .
1 F
B ‘D
M= Lkﬂ.m M_.= - 5SkN.m
A

. B

C

M= 0

Fig- 16.3 © Kinematically
restrained structure



Mpgp = +5kNm
F _

M pe = -5 kNm
F _

Mpgc =0KNm

Mgch =0kNm

For writing slope—deflection equations two spans must be considered, BC
and BD . Since supports C and D are fixed6c =6p =0 . Also the frame is

restrained against sidesway.

M 2El

Bo=5+"4 [20g |=5 + El6g
M 2El

e=5+ 4 [0p |=—5+ 0.5EI6g
VI

BC = E|9|3
M

ce= (0.5E105

Now consider the joint equilibrium of support B , (see Fig 16.3 d)

10

Fig- 16.3 (d) Free - body diagram
of joint B

(2)



YMg =0 = Mpp+Mpc-10=0 3)

Substituting the value of Mgp and M pc and from equation (2) in the above
equation

5+EIGg +EIGg -10=0

2.5
O =—
B =g, (4)
Substituting the values of 6 in equation (2), the beam end moments are

calculated

Mpgp =+7.5kN ‘m

Mpg =-3.75kN ‘m

Mpgc = +2.5kN ‘m

Mcg =+125kN -m (5)
The reactions are evaluated from static equations of equilibrium. The free body

diagram of each member of the frame with external load and end moments are
shown in Fig 16.3 (e)



10kN

SkN
. 578 5\ 3.75kN.m
- - e i - e e 5 D0.83TS5 kN
¥
T; I
5 |10 5.8375 4.0625 KN
10.9375
L
e * 0.9375
2.5

Fig-16.3(e) Free - body diagram
of frame

1.25
c | 0.9375

10.93T5

Rey =10.9375 kN(1)
Rex = —0.9375 kN(«)
Roy =4.0625 kN(1)

Rox = 0.9375 kN(—) (6)

Bending moment diagram is shown in Fig 16.3(f)



10

3.75

Fig-16.3(f) Bending moment diagram
plotted on compression side

The vertical hatching is use to represent the bending moment diagram for the
horizontal member (beams) and horizontal hatching is used for bending moment
diagram for the vertical members.

The qualitative elastic curve is shown in Fig 16.3 (Q).

A 854 F
8 r\'___/\ , [
B = g
"\ .
L
%1\ <
astic curve
4V 4 Sy v v o
c

Fig-16.3(g) Elastic curve



Example

Compute reactions and beam end moments for the rigid frame shown in Fig 16.4
(a). Draw bending moment and shear force diagram for the frame and also
sketch qualitative elastic curve.

Solution

SkN/m

>
-
-
‘0
-
-
|-
[
[
-
P

/N = R
o 21
2m
5kN !
L
I Zm
) L S
| o
I 6m "

Fig-16.4(a) Example 16.2

In this frame rotations 65 and 6g are evaluated by considering the equilibrium of

joint A and B . The given frame is kinematically indeterminate to second degree.
Evaluate fixed end moments. This is done by considering the kinematically
determinate structure. (Fig 16.4 b)



5 kM/m

Fig-16.4(b) Kinematically restrained structure

Mpg" _5x6" =15 kN
DB 12 = .m
Y 5 x6" _ 15 kN
2
Mgc = 5x2x2” _ 2.5 kN.m
4,
=5 X2 X2,
MCDF - —= =-25kN.m (1)
42

Note that the frame is restrained against sidesway. The spans must be
considered for writing slope-deflection equations viz, A, B and AC . The beam
end moments are related to unknown rotations 6, and 6g by following slope-
deflection equations. (Force deflection equations). Support C is fixed and hence

9(; =0.

L 2 ()
Mag =M ppL +—1 (26 +68)



M ag =15 - +1.333E16, + 0.667E16s

M ga = —15 + 0.667EI64 +1.333E165

M pgc =25+ EIBg +0.5E16¢

Mcg =-2.5+ 0.5E16g

Consider the joint equilibrium of support A (See Fig 16.4 (c))

ZMAZO

M ag =0 =15 +1.333E164 + 0.667E165

1.333E16, ++0.667E16g = —15

Or, 265 +6g = —22.489
El

Equilibrium of joint B (Fig 16.4(d))

»
12.92 kN I

Fig-16.4© Free - body diagram
of frame

»

12.5

5 kN

(2)

3)

17.8kN

—1.25




Fig-16.4(d) Free - body diagram of joint B
ZMB =0 = Mpgc+Mpa =0 (4)

Substituting the value of M gc and M g in the above equation,

2.333E16g + 0.667E165 =12.5 (5)
Or, 3.4986p +6, = %ﬂ

Solving equation (3) and (4)

0 = 10.002 (counterclockwise)
El

—10.2449 ) (6)
6 = (clockwise)
El
Substituting the value of 64 and 6 in equation (2) beam end moments are
evaluated.
- 16.245 10.002
Mag= 15+1.333El +0.667El ——=0
El El
-16.245 10.002
M ga = —15 +0.667ElI +133El—— =-1
El El
10.002
Me =25+ El =12.5kN.m
El
10.002
"o =-25+05El —— =25kN.m (7)

El



Using these results, reactions are evaluated from equilibrium equations as shown
in Fig 16.4 (e)

22.5

12.5

12.5

...__A\
W
\

\

C 2.5

Fig-16.4(e) B.M.D

The shear force and bending moment diagrams are shown in Fig 16.4(g) and
16.4 h respectively. The qualitative elastic curve is shown in Fig 16.4 (h).
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Fig-16.4(f) S.F.D

Fig.16.4 ( g )Elastic Curve



Fig- 16.4(h) Elastic Curve

Example

Compute reactions and beam end moments for the rigid frame shown in Fig
16.5(a). Draw bending moment diagram and sketch the elastic curve for the
frame.

Solution

5 kN/m

IT\\ l 10 kN
1y v v _

) 2l

am

i“— 4m—+—3m—+—3m—>’

Fig-16.5(a) Example 16.3



The given frame is kinematically indeterminate to third degree so three rotations
are to be calculated,6g ,6c andfp . First calculate the fixed end moments (see
Fig 16.5 b).

5 kN/'m
\_\h
~ M
l 1\“‘-\ 5 10 kN 2
A j r¥ ' ‘{ B l v t
| Te =
M L ——‘_L‘ » A
B M c
M
D E
r77 7% 7 ||
M,
Fig.16.5b Kinematically restrained structure
5 x4,
M = — =4KkN.m
20

Mgs =-5x4> = -2.667 kN.m
30

MT =10x 3x3* = 75kN.m
2
BC 6

M =-10x3x3> = =75 kN.m
2
CB 6

Mgp =Mps =Mce =Mgd =0 (1)

The frame is restrained against sidesway. Four spans must be considered for
rotating slope — deflection equation: AB, BD, BC and CE. The beam end



moments are related to unknown rotation at B, C, and D. Since the supports A
and E are fixed. 6, =6 = 0.

2 El
Mag=4+— A[26n+6s]
Mag=4+EIB,+05EI 6 =4+0.5E16g

M ga = —2.667EIl 65 + EIO g = —2.667 + ElBg

M gp = El 65 +0.5E16p

M pg = 0.5El 6g + El6p
2e(21)

Mpc =75+ [265+6¢]=75+1333El 65 +0.667EI6¢

6
Mcg = —7.5 +.667 El 65 +1.333EI16¢

Mcg = EIl 6¢c + 0.5El 6 g = El6:

MEgc =05EI6¢c + 0.5 El 6 = 0.5E16¢ (2)

Consider the equilibrium of joints B, D, C (vide Fig. 16.5(c))
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Fig-16.5 ( c ) Free - body diagram

ZMB =0 = Mpa+Mpc +Mpp =0 (3)
ZMD =0 = MDB:O (4)
ZMC =0 > Mcg+Mce =0 (5)

Substituting the values of M ga , Mgc, Mgp, M pg, M cg and M cg in the equations (3),
(4), and (5)

3.333 El 63 +0.667 ElI 6 ¢ + 0.5 EI6p = —4.833
0.5ElI 65 +EI6Bp =0
2.333 El 6 +0.667 El6 = 7.5 (6)

Solving the above set of simultaneous equations, 65 ,6c and 6p are evaluated.

E19g = —2.4125



El6c = 3.9057
El6p =1.2063 @)

Substituting the values of 6g,6c and 6pin (2), beam end moments are
computed.

M ag = 2.794 kN.m

M ga = —=5.080 kN.m
M gp = —1.8094 kN.m
M pg =0

M gc = 6.859 KN.m
Mcg = —3.9028 kN.m
Mce = 3.9057 KN.m

M gc =1.953 kN.m (8)

The reactions are computed in Fig 16.5(d), using equilibrium equations known
beam-end moments and given loading.
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Fig-16.5(d) Bending moment diagram

Ray = 6.095 kN (1)

Roy = 9.403 kN (1)

Rey = 4.502 kN (1)

Rax =1.013 kN (=)

Rpx = 0.542 kN (—)

Rex = —1.465 kN (<) )

The bending moment diagram is shown in Fig 16.5.(e) and the elastic curve is
shown in Fig 16.5(f).
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Objectives

After reading this chapter the student will be able to

1. Derive slope-deflection equations for the frames undergoing sidesway.

2. Analyse plane frames undergoing sidesway.

3, Draw shear force and bending moment diagrams.

4. Sketch deflected shape of the plane frame not restrained against sidesway.

Introduction

In this lesson, slope-deflection equations are applied to analyse statically
indeterminate frames undergoing sidesway. As stated earlier, the axial
deformation of beams and columns are small and are neglected in the analysis.
In the previous lesson, it was observed that sidesway in a frame will not occur if

1. They are restrained against sidesway.
2. If the frame geometry and the loading are symmetrical.

In general loading will never be symmetrical. Hence one could not avoid
sidesway in frames.

: R

' C c
NN ]
«—Elastic curve
4——Chord
h 1 |
la—p
L {
WYAB wYcD
A D
| L

Fig.17.1 Plane frame undergoing sway

For example, consider the frame of Fig. 17.1. In this case the frame is symmetrical
but not the loading. Due to unsymmetrical loading the beam end moments M gc and
M cg are not equal. If b is greater thana,then M gc >M g . In



such a case joint B and C are displaced toward right as shown in the figure by an
unknown amount . Hence we have three unknown displacements in this frame:
rotations 6g ,6c and the linear displacement . The unknown joint rotations

6s and 6¢ are related to joint moments by the moment equilibrium equations.
Similarly, when unknown linear displacement occurs, one needs to consider
force-equilibrium equations. While applying slope-deflection equation to columns

unknowns. It is observed that in the column AB , the end B undergoes a linear
displacement with respect to end A . Hence the slope-deflection equation for
column AB is similar to the one for beam undergoing support settlement.
However, in this case is unknown. For each of the members we can write the
following slope-deflection equations.

Mag =M ABF +£[29A +6g -3y AB ] where wag = -
h h

W ag is assumed to be negative as the chord to the elastic curve rotates in the
clockwise directions.

M . 2Bl
M . 2El
\Y
CB:MCBF+@ [29 C +GB]
h
M . 281
w=Mcp + h [29c+9D—3l.UCD] WYco =~ h
[\ ZE1
oc =Mpeh + [260 +6c —3wcp ] (17.1)
h

As there are three unknowns (6g ,6c and ), three equations are required to
evaluate them. Two equations are obtained by considering the moment
equilibrium of joint B and C respectively.

M +M =0
YMg=0 B BC (17.2a)
M +M =0
YMc =0 & cp (17.2b)
Now consider free body diagram of the frame as shown in Fig. 17.2. The
horizontal shear force acting at A and B of the column AB is given by
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Fig.17.2 Free - body diagrams of columns and beams
M +M

BA AB

Hy =——— (17.3a)

Similarly for member CD , the shear force Hs is given by

M +M

CcD DC

H. =
3 h

(17.3b)

Now, the required third equation is obtained by considering the equilibrium of
member BC ,

Yk =0 =Hy +Hs =0
M +M M +M
BA AB + CD DC - 0 (17 4)
h h

Substituting the values of beam end moments from equation (17.1) in equations
(17.2a), (17.2b) and (17.4), we get three simultaneous equations in three
unknowns 6g ,6¢ and , solving which joint rotations and translations are
evaluated.



Knowing joint rotations and translations, beam end moments are calculated from
slope-deflection equations. The complete procedure is explained with a few
numerical examples.

Example

Analyse the rigid frame as shown in Fig. 17.3a. Assume EIl to be constant for all
members. Draw bending moment diagram and sketch qualitative elastic curve.

10kN

10kN B Zm v Zm C

+ L 2

3m El El|

A D

Fig.17.3 (a) Example 17.1

Solution

In the given problem, joints B and C rotate and also translate by an amount .
Hence, in this problem we have three unknown displacements (two rotations and
one translation) to be evaluated. Considering the kinematically determinate
structure, fixed end moments are evaluated. Thus,

Magm =0;Mpa =0 ;Mg =+10kN.m: M cg™ = -10kN.m;Mcp” =0;Mpc =0. (1)

The ends Aand D are fixed. Hence, 6o =6p =0. Joints B and C translate by
the same amount . Hence, chord to the elastic curve AB'and DC' rotates by an

amount (see Fig. 17.3b)

vy
AB =cp = - 3 (2)

Chords of the elastic curve AB'and DC' rotate in the clockwise direction;
hencey ag and ycp are taken as negative.
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Fig.17.3b Column ratation
Now, writing the slope-deflection equations for the six beam end moments,
_ 2El

Mag=Mag +— 3[20a+68-3was]
MABF=0;9A:0;WAB=_3-

2 2
M aB =—3 El6g + 3 El

4 2
M ga =—3 El6s + 3 El

1
M pgc =10+ EIGg +— 2 El6c
1

M cg =-10 + 2 El6g + El6¢

4 2
M cp =—3 ElO:+ 3 El



2 2
Mpc == Elfc + =
pc =73 6c 3 El (3)

Now, consider the joint equilibrium of B and C (vide Fig. 17.3c).

M M +M =0
Z 8=0 = BA BC (4)
M M +M =0
z c=0 = cB CD (5)
MIIL ML.
B X P C
» L J MLU

Fig.17.3c Free - body diagram of joints B and C

The required third equation is written considering the horizontal equilibrium of the
entire frame i.e. ZFX =0 (vide Fig. 17.3d).

-H;+10-H, =0

=>H; +H, =10. (6)
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Fig.17.3d Free - body diagram of frame

Considering the equilibrium of the column AB and CD , yields

M +M
Hl _ BA 3 AB
and
M +M
H cD DC
2 = 3 (7)

The equation (6) may be written as,
Mga+Mag+Mcp+Mpc =30 (8)

Substituting the beam end moments from equation (3) in equations (4), (5) and

(6)

2.333E16g + 0.5E16¢ + 0.667EI =-10 9

2.333E16c + 0.5E18g + 0.667EI =10 (10)



2EIGB+2EI6C+§EI =30 (11)

Equations (9), (10) and (11) indicate symmetry and this fact may be noted. This
may be used as the check in deriving these equations.

Solving equations (9), (10) and (11),

Elfz = -9.572; El6c =1.355 and EI =17.417.

Substituting the values of Elfg , EI6: and El in the slope-deflection equation
(3), one could calculate beam end moments. Thus,

M ag =5.23 KN.m (counterclockwise)
M ga = —1.14 KN.m(clockwise)

M gc =1.130 KN.m

Mcg = —13.415 kN.m

Mcp =13.406 kN.m

M pc =12.500 kKN.m .

The bending moment diagram for the frame is shown in Fig. 17.3 e. And the
elastic curve is shown in Fig 17.3 f. the bending moment diagram is drawn on the
compression side. Also note that the vertical hatching is used to represent
bending moment diagram for the horizontal members (beams).
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Fig.17.3e Bending moment diagram
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Fig.17.3f Elastic curve

Example 2

Analyse the rigid frame as shown in Fig. 17.4a and draw the bending moment
diagram. The moment of inertia for all the members is shown in the figure.
Neglect axial deformations.

B C
l I I
3m 3m
12 kNgzl l
B T
| o
3m
lﬁ —mif'f-
" al
| P

Fig.17.4a (Example 17.2)



Solution:

In this problem rotations and translations at joints B and C need to be evaluated.
Hence, in this problem we have three unknown displacements: two rotations and
one translation. Fixed end moments are

F: M:gkN,m;MBAF =-9 kNm,
36 (1)

Mgc =0;Mcg” =0;Mcp" =0;Mpc™ =0.

M ag

The joints B and C translate by the same amount . Hence, the chord to the
elastic curve rotates in the clockwise direction as shown in Fig. 17.3b.

Ya=-

6
and Wep == @)
— - Ba
B B C C
A
"o
F W
4 Fig.17.4b Column rotation due to sway

Now, writing the slope-deflection equations for six beam end moments,
2(2 El)
Mag=9+__6  6s+2
M ag =9 +0.667EI165 + 0.333El

M ga = -9 +1.333E16g +0.333El

Version 2 CE IIT, Kharagpur



M gc = EIBg + 0.5E16¢
M cg = 0.5E16g + EIB¢

M cp =1.333EI6¢ + 0.667El

M pc =0.667EI16¢ + 0.667El (3)
Now, consider the joint equilibrium of B and C .

M +M =0
YMg=0 = B BC (4)

M +M =0
YMc =0 = & D (5)
The required third equation is written considering the horizontal equilibrium of the
entire frame. Considering the free body diagram of the member BC (vide Fig.
17.4c),

Hi+Hy =0.
(6)
Hi g cH H
— = —
»
M‘“ Ms; M s
Y S 72
H, M. Cc
12kN
s r M,
“—H, -
A ) D M.

Fig.17.4c Free - body diagram



The forces H; and H, are calculated from the free body diagram of column
AB and CD . Thus,

M +M
BA AB
H1 =-6+ 5
and
VI T Ivi
H ) — CD DC (7)
3

Substituting the values of H; and H; into equation (6) yields,

Mpga+Mag+2Mcp + 2M pc = 36 (8)

Substituting the beam end moments from equation (3) in equations (4), (5) and
(8), yields

2.333E16g + 0.5E16c + 0.333El =9

2.333El6¢c + 0.5E165 + 0.667El =0

2E16g + 4E16: +3.333El =36 (9)
Solving equations (9), (10) and (11),
El6g =2.76; EI6:c =-4.88 and El =15.00.

Substituting the values of El6g, EI6c and El in the slope-deflection equation
(3), one could calculate beam end moments. Thus,

M ag =15.835 kN.m  (counterclockwise)
M ga = —0.325 kN.m(clockwise)

M gc = 0.32 kN.m
Mcg = —3.50 kN.m
Mcp = 3.50 kN.m
M pc = 6.75 kN.m .

The bending moment diagram for the frame is shown in Fig. 17.4 d.
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Fig.17.4d Bending moment diagram



Example 3

Analyse the rigid frame shown in Fig. 17.5 a. Moment of inertia of all the
members are shown in the figure. Draw bending moment diagram.
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Fig.17.5a Example 17.3
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T'n'."t'"."' .-.-‘-\!-..-
A D
Fig.17.5b Rotation of
Columns and beams

Under the action of external forces, the frame gets deformed as shown in Fig.
17.5b. In this figure, chord to the elastic curve are shown by dotted line. BB' is
perpendicular to AB and CC" is perpendicular to DC . The chords to the elastic



curve AB" rotates by an angle @ g , B"C" rotates by w gc and DC rotates by wcp
as shown in figure. Due to symmetry, @cp =@ ag . From the geometry of the

figure,

But

Thus,

_BB" _
VeIl D
AB AB
! cosa
LlJ = - = -
AB CABCOSQ 5
Yy =-
cD 5
_ 2 _ 2tana _ _
Wac = == =~ = tana= (1)
2 2 5

We have three independent unknowns for this problem 6g ,6c and . The ends
A and D are fixed. Hence, 65 =6p = 0. Fixed end moments are,

Mag =0;Mpga =0;Mpge" =+250kN.m ;M cg" = =2.50kN.m; M cp” =0:Mpc =0.

Now, writing the slope-deflection equations for the six beam end moments,

M
AB :@[QA -3y AB]

5.1

M ag = 0.784E16g + 0.471EI

M ga =1.568E10g + 0.471E|
M

sc = 2.5 + 2E16g + El6 — 0.6EI
M

8c = =2.5 + El6g + 2E16c —0.6E|
M cp =1.568E16¢ + 0.471EI

M
oc = 0.784E16c + 0.471El (2)

Now, considering the joint equilibrium of B and C , yields



>M +M =0
ZMBZO BA BC

3.568E165 + EI6: — 0.129El =-25 3)
>M +M =0

ZM c =0 c8 cD

3.568E16c + EI6g — 0.129EI =25 4)
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> G T‘ - ~‘ -
]
Vv,
v p " v M <o
," > I. = 17 »>

’ l" H l'u H 2
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Fig.17.5c Free- body diagram

Shear equation for

Column AB
5H1-Mag—-Mpa+(1)V1 =0 (5)

Column CD
5Hy-Mcp—-Mpc+(1)Ve =0 (6)

Beam BC

ZMC =0 2V1—MBC—MCB—10=O (7)



F
Z x =0 Hi+Hy; =5 (8)
YFy =0 V1-V,-10=0 (9)

From equation (7), V= Msc+Mcp+10
1
2

From equation (8), Hi=5-H>

From equation (9), V =V -10=Masc+Mcp+10 19
2 1
2

Substituting the values of V; , H; and V; in equations (5) and (6),

60-10H, - 2M pg = 2M gpa + Mgc + M cg =0 (10)
-10+10H,-2M cp—-2Mpc + Mgc + M cg =0 (11)

Eliminating H, in equation (10) and (11),
Mag+Mpa+Mcp+Mpc—Mpec-Mcg=25 (12)

Substituting the values of M ag, Mga, M cp, M pc in (12) we get the required third
equation. Thus,

0.784E16g + 0.471El + 1.568E105 + 0.471El + 1.568E16¢ + 0.471El +
0.784E16c + 0.471El -(2.5 + 2EI6g + E16c — 0.6EI )-
(- 2.5+ EI@g + 2E16c - 0.6E1 ) =25

Simplifying,
- 0.648E16¢ —0.648E165 +3.084EI =25 (13)
Solving simultaneously equations (3) (4) and (13), yields

Elfg = -0.741; El6c =1.205 and EI =8.204.

Substituting the values of Elfz, EI6c  and El in the slope-deflection equation
(3), one could calculate beam end moments. Thus,

M ag = 3.28 KN.m



UNIT-IV
MOMENT DISTRIBUTION METHOD

Objectives

After reading this chapter the student will be able to
1. Calculate stiffness factors and distribution factors for various members in
a continuous beam.
Define unbalanced moment at a rigid joint.
Compute distribution moment and carry-over moment.
Derive expressions for distribution moment, carry-over moments.
Analyse continuous beam by the moment-distribution method.

1 B N

Introduction

In the previous lesson we discussed the slope-deflection method. In slope-
deflection analysis, the unknown displacements (rotations and translations) are
related to the applied loading on the structure. The slope-deflection method
results in a set of simultaneous equations of unknown displacements. The
number of simultaneous equations will be equal to the number of unknowns to be
evaluated. Thus one needs to solve these simultaneous equations to obtain
displacements and beam end moments. Today, simultaneous equations could be
solved very easily using a computer. Before the advent of electronic computing,
this really posed a problem as the number of equations in the case of multistory
building is quite large. The moment-distribution method proposed by Hardy Cross
in 1932, actually solves these equations by the method of successive
approximations. In this method, the results may be obtained to any desired
degree of accuracy. Until recently, the moment-distribution method was very
popular among engineers. It is very simple and is being used even today for
preliminary analysis of small structures. It is still being taught in the classroom for
the simplicity and physical insight it gives to the analyst even though stiffness
method is being used more and more. Had the computers not emerged on the
scene, the moment-distribution method could have turned out to be a very
popular method. In this lesson, first moment-distribution method is developed for
continuous beams with unyielding supports.

Basic Concepts

In moment-distribution method, counterclockwise beam end moments are taken
as positive. The counterclockwise beam end moments produce clockwise
moments on the joint Consider a continuous beam ABCD as shown in Fig.18.1a.

In this beam, ends A and D are fixed and hence,8 4 =6p =0 .Thus, the
deformation of this beam is completely defined by rotations 65 and e - at joints B
and C respectively. The required equation to evaluate 6z and 6. is obtained by
considering equilibrium of joints B and C. Hence,



Z'V'B
Z'V'c

According to slope-deflection equation, the beam end moments are written as

2 El
Mpa=Mpa +1— "°(26g)

0 =>Mpgat+tMpc=0 (18.1a)

0 =>Mcg+Mcp=0 (18.1b)

4E| . . .
AB is known as stiffness factor for the beam AB and it is denoted
AB

by k ag - M BAF is the fixed end moment at joint B of beam AB when joint B is fixed.
Thus,

M ga =M ga" + K g6z

F
MBC:MBC +KBCQB+G_C
2
= 6
e “MCB "Mes % +—2
2
F
Mcp=Mcp +Kcpbc (18.2)

In Fig.18.1b, the counterclockwise beam-end moments M gn and Mpc produce
a clockwise moment M g on the joint as shown in Fig.18.1b. To start with, in
moment-distribution method, it is assumed that joints are locked i.e. joints are
prevented from rotating. In such a case (vide Fig.18.1b),

6g =6¢ =0, and hence

Mpa=M BAF
Mpc=M BCF
Mcg=M CBF
Mcp=Mcp (18.3)

Since joints B and C are artificially held locked, the resultant moment at joints B

and C will not be equal to zero. This moment is denoted by M g and is known as
the unbalanced moment.
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Fig. 18.1a Continuous Beam
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Fig. 18.1b Continuous beam with fixed joints.
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Fig. 18.1c Free - body diagram of joints B

Thus,
F F
Mg=Mpa +Mapgc

In reality joints are not locked. Joints B and C do rotate under external loads.
When the joint B is unlocked, it will rotate under the action of unbalanced
moment M g . Let the joint B rotate by an anglefg; , under the action of M g .
This will deforgn the sotlructure as shown in Fig.18.1d and introduces distributed
moment M gp M gc  in the span BA and BC respectively as shown in the figure.
The unknown distributed moments are assumed to be positive and hence act in
counterclockwise direction. The unbalanced moment is the algebraic sum of the

fixed end moments and act on the joint in the clockwise direction. The
unbalanced moment restores the equilibrium of the joint B. Thus,

d d
ZMB=0, Mpa tMpc *tMp =10 (18.4)

The distributed moments are related to the rotation  6g1 by the slope-deflection
equation.



d
Mpa =Kpabg1

d
MBc =Kpcbsl (18.5)

Substituting equation (18.5) in (18.4), yields

61 (Kpa+Kpc)=-Mp

6 == M,
B + KBC
In general,
MB
Og1 = -EK (18.6)

where summation is taken over all the members meeting at that particular joint.
Substituting the value of 6g; in equation (18.5), distributed moments are
calculated. Thus,

K
d BA
M K
BA:—Z Mg
K
M = =K Mg (18.7)
BC =—Z .

. TKea o .
The ratio K is known as the distribution factor and is represented by DFga .
Thus,

d
Mpa =-DFpa. MB

d
Mpc =-DFpc.MB (18.8)

The distribution moments developed in a member meeting at B, when the joint B

is unlocked and allowed to rotate under the action of unbalanced moment M g is
equal to a distribution factor times the unbalanced moment with its sign reversed.

As the joint B rotates under the action of the unbalanced moment, beam end
moments are developed at ends of members meeting at that joint and are known
as distributed moments. As the joint B rotates, it bends the beam and beam end
moments at the far ends (i.e. at A and C) are developed. They are known as
carry over moments. Now consider the beam BC of continuous beam ABCD.



When the joint B is unlocked, joint C is locked .The joint B rotates by 6g1 under

the action of unbalanced moment M g (vide Fig. 18.1e). Now from slope-
deflection equations

Mgc = Kpchs
M 1K 6
BC = E BC B
M1
c8 =% Mgc (18.9)
1 s_ O ¥ 3 2

Fig. 18.1d Joint B is unlocked keeping C locked.
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Fig.18.1e Carry - over moment

The carry over moment is one half of the distributed moment and has the same
sign. With the above discussion, we are in a position to apply moment-
distribution method to statically indeterminate beam. Few problems are solved

here to illustrate the procedure. Carefully go through the first problem, wherein
the moment-distribution method is explained in detail.

Example

A continuous prismatic beam ABC (see Fig.18.2a) of constant moment of inertia
is carrying a uniformly distributed load of 2 kN/m in addition to a concentrated

load of 10 kN. Draw bending moment diagram. Assume that supports are
unyielding.
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Fig 18.2a Example 18.1

A

Solution

Assuming that supports B and C are locked, calculate fixed end moments
developed in the beam due to externally applied load. Note that counterclockwise
moments are taken as positive.

wL, 2x9
MasF=_ a= =1.5kN.m
12 12
2
M = -2t = _2X9 g 5N m
12 12

e LY T 16

BC

2
P
mF oo PA_10x2x4_ gynm

F Pa’b 10x 2 x4
e =- L == 16 =-5kN.m (1)

Before we start analyzing the beam by moment-distribution method, it is required
to calculate stiffness and distribution factors.

4El
Kpa=——
BA 3

K go = 2E!

4

At B: ZK = 2.333El

1.333El _
2.333El

DFgp =

DFpc = =0.429

El
2.333El



Note that distribution factor is dimensionless. The sum of distribution factor at a
joint, except when it is fixed is always equal to one. The distribution moments are
developed only when the joints rotate under the action of unbalanced moment. In
the case of fixed joint, it does not rotate and hence no distribution moments are
developed and consequently distribution factor is equal to zero.

In Fig.18.2b the fixed end moments and distribution factors are shown on a
working diagram. In this diagram B and C are assumed to be locked.

z — 2 %

; [ —2f el &

1.5 - 1.5 +5 -5
Fig. 18.2b

Now unlock the joint C. Note that joint C starts rotating under the unbalanced
moment of 5 kN.m (counterclockwise) till a moment of -5 kN.m is developed
(clockwise) at the joint. This in turn develops a beam end moment of +5 kN.m

(M CB ) This is the distributed moment and thus restores equilibrium. Now joint C

is relocked and a line is drawn below +5 kN.m to indicate equilibrium. When joint
C rotates, a carry over moment of +2.5 kN.m is developed at the B end of
member BC.These are shown in Fig.18.2c.

'ff;—' 0.571 '—,’u—[o.azg }—[1.0 A

+1.5 - 1.5 + 5.0 - 5.0
+25 - + 5.0
0

Fig. 18.2c

When joint B is unlocked, it will rotate under an unbalanced moment equal to
algebraic sum of the fixed end moments(+5.0 and -1.5 kN.m) and a carry over
moment of +2.5 kN.m till distributed moments are developed to restore
equilibrium. The unbalanced moment is 6 KN.m. Now the distributed moments m
sc and M gp are obtained by multiplying the unbalanced moment with the
corresponding  distribution factors and reversing the sign. Thus,



M gc = -2.574 KN.m and M ga = -3.426 kN.m. These distributed moments restore
the equilibrium of joint B. Lock the joint B. This is shown in Fig.18.2d along with
the carry over moments.

:1A B
A & &
+1.5
1.713 « 1.9 +5.0 - 50
- 3.426  +25 _*s50
4.926 - 2.574 —___ 0
4.926 TR . 4.287
Fig. 18.2d

Now, it is seen that joint B is balanced. However joint C is not balanced due to
the carry over moment -1.287 kN.m that is developed when the joint B is allowed
to rotate. The whole procedure of locking and unlocking the joints C and B
successively has to be continued till both joints B and C are balanced
simultaneously. The complete procedure is shown in Fig.18.2e.

1 Ve 8 ¢
A4 {0.571 | 7 10.429 } A
// a/ iy 7
EEM *1.5 - 1.5 +5.0 - 5.0
- 1.718
Balance C & C.0 +2.5« * 5-00
- 3.426 - 2.574 —_
Balance B&COtoBtoAto C Rt | S —
- 4.926 + 4.926 —» - 1.287
Balance C & C.O - 0.368 0.644 & + 1.287
Balance B & C.0 - 5.294 - 0276 —_ Q
- 0.184 - 0.0394 + 5.294 > . 0.138
- 5,333 +0.060 ¢+ 0.138
-0.030 — 0
Balance C ~. _+5333 —— . 0.015
e + 0.015
Final moment - 0.417 0

Fig. 18.2e Moment - distribution method : Computation

The iteration procedure is terminated when the change in beam end moments is
less than say 1%. In the above problem the convergence may be improved if we
leave the hinged end C unlocked after the first cycle. This will be discussed in the
next section. In such a case the stiffness of beam BC gets modified. The above
calculations can also be done conveniently in a tabular form as shown in Table
18.1. However the above working method is preferred in this course.



Table 18.1 Moment-distribution for continuous beam ABC

Joint A B C
Member AB BA BC CB
Stiffness 1.333El 1.333El El El
Distribution 0.571 0.429 1.0
factor
FEM in[+1.5 -1.5 +5.0 -5.0
kKN.m
Balance +2.5 +5.0
jointsC  ,B[-1.713 -3.426 -2.579 0
and C.O.

-4.926 +4.926 -1.287
Balance C +0.644 1.287
and C.O.
Balance B -0.368 -0.276 -0.138
and C.O.
Balance C |-0.184 -5.294 +5.294 0.138
C.O. +0.069 0
Balance B[-0.02 -0.039 -0.030 -0.015
and C.O.
Balance C +0.015
Balanced -0.417 -5.333 +5.333 0
moments in
kN.m

Modified stiffness factor when the far end is hinged

As mentioned in the previous example, alternate unlocking and locking at the
hinged joint slows down the convergence of moment-distribution method. At the
hinged end the moment is zero and hence we could allow the hinged joint C in
the previous example to rotate freely after unlocking it first time. This
necessitates certain changes in the stiffness parameters. Now consider beam
ABC as shown in Fig.18.2a. Now if joint C is left unlocked then the stiffness of
member BC changes. When joint B is unlocked, it will rotate by 6g; under the

action of unbalanced moment m g .The support C will also rotate by 6c; as it is

free to rotate. However, moment M cg = 0. Thus
(AN

BC

M cg = K pofic + —=6g (18.7)
But, Mcg=0
= 6c=- 9_52 (18.8)
Now, K
M Bc = K BB + ——6c (18.9)



Substituting the value of ¢ in egn. (18.9),

[AN
BC 3K 6
Mpc=KpcOg-"4 6B=7, BC B (18.10)
R
Mgc=Kpgc 6B (18.11)
R . 3K
The Kpc is known as the reduced stiffness factor and is equalto 4 BC

Accordingly distribution factors also get modified. It must be noted that there is
no carry over to joint C as it was left unlocked.

Example 2

Solve the previous example by making the necessary modification for hinged end
C.

:.]A [ 0.64 | :_ { 0.36} {1.0 | i
+1.5
- 1.92 - 1.5 + 50 - 5.0
- 0.42 - 3.84 +2.5 +5.0
' - 5.34 - 2.16 0
. T +5.34 Se—

Fig. 18.3 Example 18.2

Fixed end moments are the same. Now calculate stiffness and distribution
factors.

3
K Ba =1.333EI, K C =7 EI = 0.75E|
Joint B: ZK = 2.083, Dea’ =064, Dgc =0.36

Joint C: ZK =0.75El, by =1.0
All the calculations are shown in Fig.18.3a

Please note that the same results as obtained in the previous example are
obtained here in only one cycle. All joints are in equilibrium when they are
unlocked. Hence we could stop moment-distribution iteration, as there is no
unbalanced moment anywhere.



Example 3

Draw the bending moment diagram for the continuous beam ABCD loaded as
shown in Fig.18.4a.The relative moment of inertia of each span of the beam is
also shown in the figure.

3 kN/m 110 kN 5 kN

l ; l
2Ly ; f‘ } Y ‘ 4..¢-.,.Y.,,!;P_, e A I~
b
8m Im Im 3m
Fig. 18.4a Example 18.3
Solution

Note that joint C is hinged and hence stiffness factor BC gets modified. Assuming
that the supports are locked, calculate fixed end moments. They are

M ag =16 KN.m

Mga™ = =16 kN.m
Mgc™ = 7.5 kN.m

Mcg™ = -7.5kN.m, and

Mcp =15 kKN.m

In the next step calculate stiffness and distribution factors

4E|
K =
BA 3
3 8EI
Kge=7—-

4 6



At joint B:

At C:

ZK = 0.5El +1.0El =1.5EI

. 05 EI
Dga =15 El =0.333

1 .0 EI
Dgc =715 E|I =0.667

Y K = El, Dgg' =1.0

Now all the calculations are shown in Fig.18.4b

A

1
1

16.00
2.04

18.04

B — € D
0.383 % 0.667 | {1.0 | %
-16.0 7.50 - 7.5 +15.0
+ 4.08 - 3.75 - 7.5
-11.92 + B.17 -15.0 + 15.0
— F11.92 —_—

Fig. 18.4b Computation

This problem has also been solved by slope-deflection method (see example
14.2).The bending moment diagram is shown in Fig.18.4c.

15.0

i8.04

1

11.92

) \

Fig. 18.4c Bending - moment diagram






Instructional Objectives

After reading this chapter the student will be able to
1. Solve continuous beam with support settlements by the moment-

distribution method.

2. Compute reactions at the supports.
3. Draw bending moment and shear force diagrams.
4, Draw the deflected shape of the continuous beam.

Introduction

In the previous lesson, moment-distribution method was discussed in the context
of statically indeterminate beams with unyielding supports. It is very well known
that support may settle by unequal amount during the lifetime of the structure.

Such support settlements induce fixed end moments in the beams so as to hold

the end slopes of the members as zero (see Fig. 19.1).

ﬁ b

G S Py

Fig . 19.1 Support settlement without ratation

In lesson 15, an expression (equation 15.5) for beam end moments were derived

by superposing the end moments developed due to

1. Externally applied loads on beams

2. Due to displacements 65 ,6g and (settlements).

The required equations are,

Mg =M pg" + 25128 20, +65 _3 (19.1a)



F 2El AB

Mga=Mpn + 26 +65 — 3 (19.1b)

L L

AB AB

This may be written as,
_ F s
Mag=Mpg +2K g [204+65 ]+ M g (19.2a)

Mea=Mpa +2K g [205+64 ]+ Mgy’ (19.2b)

El
where K ag = -|_—AB is the stiffness factor for the beam AB. The coefficient 4 has
AB
been dropped since only relative values are required in calculating distribution

factors.
6El ap
M ag’
Note that Mag’ =Mga" =~ (19.3)
L A

is the beam end moments due to support settlement and is negative
(clockwise) for positive support settlements (upwards). In the moment-distribution
method, the support moments M ABS and M BAS due to uneven support

settlements are distributed in a similar manner as the fixed end moments, which

were described in details in lesson 18.

It is important to follow consistent sign convention. Here counterclockwise beam
taken as positive. The moment-distribution method as applied to statically
indeterminate beams undergoing uneven support settlements is illustrated with a

few examples.



Example 1

Calculate the support moments of the continuous beam ABC (Fig. 19.2a) having

constant flexural rigidity EI throughout, due to vertical settlement of support B by

5mm. Assume E = 200 GPa: and I =4 x10 *m*.

'_.’_1 a 8 c
1 / El El [ o
J W = T Whae N\,

N )

Fig . 19.2a Chord rotation due to support settiement
( Example 19.1)

Solution

There is no load on the beam and hence fixed end moments are zero. However,

fixed end moments are developed due to support settlement of B by 5mm. In the

span AB , the chord rotates by y ag in clockwise direction. Thus,

5x10 _,
WYag="— 5
S S 6El ap 6x200 x10 *x4 x10 * 5x107°
Mag=Mpa=-  —~— Wa=- -
L
AB 5 5
=96000 Nm =96 kKNm. (1)

In the span BC , the chord rotates by wgc in the counterclockwise direction and

hence taken as positive.

5x10 _

WYec = 53



q q 6El gc 6 x200 x10° x4 x10 _, 5x10°

Mgc =Mcg=- Ype =~

BC 5 5

= -96000 Nm = —96 kNm. )

Now calculate stiffness and distribution factors.

Kea= S8 = 0.2E1 and Kge = > E'BC = g.15E] (3)
L L

AB 4 BC

Note that, while calculating stiffness factor, the coefficient 4 has been dropped
since only relative values are required in calculating the distribution factors. For
span BC , reduced stiffness factor has been taken as support C is hinged.

AtB:

Y K = 0.35El
0.2E|
Faa = =0.571
BA 7 0.35EI
DE =0.15El =429 (4)
B 0.35E|
At support C :
> K = 0.15E1 ; DFcg =1.0.

Now joint moments are balanced as discussed previously by unlocking and
locking each joint in succession and distributing the unbalanced moments till the
joints have rotated to their final positions. The complete procedure is shown in
Fig. 19.2b and also in Table 19.1.



- a | 0.571 B 0.428 c

A - 6 e
Fixed end mt. +896.0 +06.0 -86.0 -B6.0
Balance joint C 48.0 . —
and com. . 2747 -20.59 o0
4371 4 ) -
Balance joint B .
+68.59 .
Final mamant +82.29

Fig. 19.2b Computation

Table 19.1 Moment-distribution for continuous beam ABC

Joint A B IC
Member BA BC CB
Stiffness factor 0.2El 0.15El 0.15El
Distribution Factor 0.571 0.429 1.000
Fixed End Moments
(KN.m) 96.000 96.000 -96.000 -96.000
Balance joint C and
C.O.toB 48.00 96.000
Balance joint B and

C.O.to A -13,704 -27.408 -20.592
Final Moments
(KN.m) 82.296 68.592 -68.592 0.000

Note that there is no carry over to joint C as it was left unlocked.

Example 2

A continuous beam ABCD is carrying uniformly distributed load 5 kN / m as shown
in Fig. 19.3a. Compute reactions and draw shear force and bending moment
diagram due to following support settlements.

Support B, 0.005m vertically downwards Support C, .0100m vertically downwards.
Assume E = 200GPa ; 1 =1.35 x10 > m* .
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Fig .19.3a Continuous beam of Example 19.2

Solution:

Assume that supports A, B, C and D are locked and calculate fixed end moments
due to externally applied load and support settlements. The fixed end beam

moments due to externally applied loads are,

M = 22290 = 41 67 kN.m; M ga" = -41.67 kN.m
12
Mg = +41.67 KN.m; M e = —41.67 kN.m
Mco” = +41.67 kN.m; M pc" = -41.67 kN.m (1)

In the span AB , the chord joining joints A and B rotates in the clockwise direction

as B moves vertical downwards with respect to A (see Fig. 19.3b).

wag = —0.0005 radians (negative as chord AB' rotates in the clockwise direction
from its original position)

Wgc = —0.0005 radians

Wcep = 0.001 radians (positive as chord C'D rotates in the counterclockwise
direction).

Now the fixed end beam moments due to support settlements are,

W 9 -3
MABs=_6EIAB s = 06%200x107x1.35x10

“he 10
=81000 N.m =81.00 kN.m

(-0.0005)

Mgs® =81.00 kN.m
Mg =Mcg® =81.00 kN.m
Me® =Mpe” = -162.00 kN.m 3)



In the next step, calculate stiffness and distribution factors. For span AB and CD
modified stiffness factors are used as supports A and D are hinged. Stiffness

factors are,

3 El El
K ga =575 = 0.075EI ; Kec =75 =0.10El
: (4)

Keg = = 0.10EI; Kep =3 El= 0.075El

10 4 10
Atjoint A: D K = 0.075EI ; DFg =1.0
At joint B: > K =0.175EI ; DFga = 0.429 ; DFgc = 0.571
Atjoint C : ) K = 0.175EI ; DFcg = 0571 ; DFcp = 0.429
Atjoint D : ) K = 0.075EI ; DFpc =1.0

The complete procedure of successively unlocking the joints, balancing them and
locking them is shown in a working diagram in Fig.19.3c. In the first row, the
distribution factors are entered. Then fixed end moments due to applied loads

and support settlements are entered. In the first step, release joints Aand D . The

unbalanced moments at Aand D are 122.67 kN.m, -203.67 kN.m respectively.

Hence balancing moments at Aand D are -122.67 kN.m, 203.67 kN.m
respectively. (Note that we are dealing with beam end moments and not joint
moments).



The joint moments are negative of the beam end moments. Further

leave A and D unlocked as they are hinged joints. Now carry over moments
-61.34 kN.m and 101.84 kN.m to joint B and C respectively. In the next cycle,

balance joints B and C . The unbalanced moment at joint B is 100.66 kN.m .
Hence balancing moment for beam BA is —43.19 ( — 100.66 x0.429) and for BC is

-57.48 kN.m (-100.66 x 0.571) . The balancing moment on BC gives a carry over
moment of -26.74 kN.m to joint C . The whole procedure is shown in Fig. 19.3c
and in Table 19.2. It must be noted that there is no carryover to joints A and D as

they were left unlocked.



B c
D
A 10 | 0.429| [os71|  |0s71] 0.2 | 1.0
Rlé.ﬂlmﬂm factors
aa 14 @ 7
to ext.loads 41.67 -41.6 +41.67 -41. 41.67 1.67
FEM due
to supports 81.00 81.00 81.00 81.00 -162.00 -162.00
Settlement
Joint A and D
released and -122.87 +203.67
balanced and \\
moment convert - /
B&C \ Y
:nnlnm:n B&C 00  .61.34 4349 -57.48 . Attden 84,038 0.0
-65.20 H.“p’/>< 2T7.43  -ZT.43
kY
-5.95 -26.74
2.552 3.40 16.41 12.33
Balance B & C and -_—
c.0. 62.65 G264 \:mn 5.0
B8.205 1.70
-3.52 -4.685 -0.897 -0.729
Balance B & C and >(
G.0. 66,17 EB.1Tf, 15.83 -15.83
P "
-0.49 -2.35
0.208 0.28 - 134 101
Balance B & C and 3
c.0. -65.95 65.85 14.82 -14.82
-0.67 -0.14
-0.29 0.38 -0.08 -0.06
Final moments 0.00 A44.88 0.00

-66.67 6B6.67 14.88

Fig. 19.3 © Computation

Version



Table 19.2 Moment-distribution for continuous beam ABCD

Joint A B C D
Members AB BA BC CB CD DC
Stiffness factors 0.075 ElI 0.075 El 0.1 El 0.1 El 0.075 EI 0.075 EI
Distribution 1.000 0.429 0.571 0.571 0.429 1.000
Factors

FEM  due to 41.670 -41.670 41670 -41.6/0 41.670 -41.670

externally

applied loads

FEM due to 81.000 81.000 81.000 81.000 - -

support 162.000 162.000

settlements

Total 122.670 39.330 122.670 39.330 - -
120.330 203.670

Balance Aand D - 203.670

released 122.670

Carry over -61.335 101.835

Balance B and C -43.185 -57.480 -11.897 -8.94

Carry over -5.95 -26.740

Balance B and C 2.552 3.40 16.410 12.33

Carry overto B 8.21 1.70

and C

Balance B and C -3.52 -4.69 -0.97 -0.73

C.O.toBandC -0.49 -2.33

Balance B and C 0.21 0.28 1.34 1.01

Carry over 0.67 0.14

Balance B and C -0.29 -0.38 -0.08 -0.06

Final Moments 0.000 -66.67 66.67 14.88 -14.88 0.000



Example 3
Analyse the continuous beam ABC shown in Fig. 19.4a by moment-distribution
method. The support B settles by 5mm below A and C . Assume EI to be constant

for all members E = 200GPa ; and | = 8 x10% mm* .

4kN
2kN/
B = c
LA ‘ ‘ |
. A & * Y Y Y Y Y Y Y Y
El e El oee
2m ; 2m v/ 4m
4l

1/
1

Fig. 19.4 (a) Example 19.4a

Solution:

Calculate fixed end beam moments due to externally applied loads assuming that

support B and C are locked.

Mug = +2 kN.m : Mgy = =2 kN.m

F F (1)
Mgc = +2.67 kN.m ; Mcs = —2.67 KN.m

In the next step calculate fixed end moments due to support settlements. In the
span AB , the chord AB' rotates in the clockwise direction and in span BC , the

chord B'C rotates in the counterclockwise direction (Fig. 19.4b).

'-.‘;‘r‘b.

( b
Fig. 19.4 (b) Member rotation due to
support settilement




W 5x107°

AB = — 4 =-125 x10"° radians
WY  5x10° .

ec =~ 4  =125x10"° radians 2)

. ¢ 6Elg 6 x200x10°x8 x10°  5x10°
Mag=Mpp=- Yae =- B

L
AB 4 4
= 3000 Nm = 3 kNm. ©)

Mpc® =M s> = —3.0kN.m
In the next step, calculate stiffness and distribution factors.

K AB — KBA = 0.25El

Kee =20.25E1 = 0.1875EI “)
4
AtjointB: » K=04375El ;  DFga=0.571; DFgc = 0.429
Atjoint C: D K=0.1875El;  DFcg=1.0

At fixed joint, the joint does not rotate and hence no distribution moments are

developed and consequently distribution factor is equal to zero. The complete

moment-distribution procedure is shown in Fig. 19.4c and Table 19.3. The

diagram is self explanatory. In this particular case results are obtained in two

cycles. In the first cycle joint C is balanced and carry over moment is taken to

joint B . In the next cycle , joint B is balanced and carry over moment is taken to

joint A . The bending moment diagram is shown in fig. 19.4d.



Table 19.3 Moment-distribution for continuous beam ABC

Joints A B C
Member AB BA BC CB
Stiffness factor 0.25 El 0.25 El 0.1875 El 0.1875 El
Distribution Factor 0.571 0.429 1.000
Fixed End Moments 2.000 -2.000 2.667 -2.667
due to applied loads
(KN.m)
Fixed End Moments 3.000 3.000 -3.000 -3.000
due to support
settlements (KN.m)
Total 5.000 1.000 -0.333 -5.667
Balance joint C and 2.835 5.667
C.0.
Total 5.000 1.000 2.502 0.000
Balance joint B and -1.00 -2.000 -1.502
C.O.to A
Final Moments (kN.m) 4.000 -1.000 1.000 0.000
D.F P 0.571 | ® a2 s
o
FEM due to loads +2 -2.0 2.67 -2.67
FEM due to support +3 +3.0 -3.0 -3.0
settilement
Balance joint C and
C.O0.t0B
28— 4587
Balance B and C.0 to
A T Y 1.87
1 -— — 0.00
Final moment 4.0 1.0 1.0 -

19.4 ( c ) Computation




FIG. 19.4 (d)



Instructional Objectives

After reading this chapter the student will be able to

1. Solve plane frame restrained against sidesway by the moment-distribution
method.

2. Compute reactions at the supports.

3. Draw bending moment and shear force diagrams.

4. Draw the deflected shape of the plane frame.

Introduction

In this lesson, the statically indeterminate rigid frames properly restrained against
sidesway are analysed using moment-distribution method. Analysis of rigid
frames by moment-distribution method is very similar to that of continuous beams
described in lesson 18. As pointed out earlier, in the case of continuous beams,
at a joint only two members meet, where as in case of rigid frames two or more
than two members meet at a joint. At such joints (for example joint C in Fig. 20.1)
where more than two members meet, the unbalanced moment at the beginning
of each cycle is the algebraic sum of fixed end beam moments (in the first cycle)
or the carry over moments (in the subsequent cycles) of the beam meeting at C .
The unbalanced moment is distributed to members CB, CD and

CE according to their distribution factors. Few examples are solved to explain

procedure. The moment-distribution method is carried out on a working diagram.

r

Y

RN

Fig. 20.1 Plane frame



Example 1

Calculate reactions and beam end moments for the rigid frame shown in Fig.
20.2a. Draw bending moment diagram for the frame. Assume El to be constant

for all the members.

SkN 10kN
El El 2
El 4m
C
| Zm 2m L 2m e

Fig. 20.2a Rigid plane frame of Example 20.1

Solution

In the first step, calculate fixed end moments.

M gp" = 5.0 kKN.m

M pg" = =5.0 kN.m
1)

M gc" = 0.0 kN.m
F_
Mcg =0.0 kN.m

Also, the fixed end moment acting at B on BA is clockwise.

M ga” = —10.0 KN.m



In the next step calculate stiffness and distribution factors.

K =El El
B 4 =025El and Kgc = 4= 0.25El
AtjointB :
> K = 0.50El
DF =025El =-o05; DF =05 2)
B> 0.5EI B¢

All the calculations are shown in Fig. 20.2b. Please note that cantilever member
does not have any restraining effect on the joint B from rotation. In addition its
stiffness factor is zero. Hence unbalanced moment is distributed between
members BC and BD only.

-10 +7.5 — b
oo &8 _» 125

0.0
—r*1.25

t1.25

Fig. 20.2b Moment distribution

In this problem the moment-distribution method is completed in only one cycle,
as equilibrium of only one joint needs to be considered. In other words, there is
only one equation that needs to be solved for the unknown 6g in this problem.
This problem has already been solved by slop- deflection method wherein
reactions are computed from equations of statics. The free body diagram of each
member of the frame with external load and beam end moments are again
reproduced here in Fig. 20.2c for easy reference. The bending moment diagram
is shown in Fig. 20.2d.
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Fig. 20.2c Reactions

Fig.
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Bending moment diagram



Example 2

Analyse the rigid frame shown in Fig. 20.3a by moment-distribution method.
Moment of inertia of different members are shown in the diagram.

SkN/m
5 10kN
! [ T- \‘“--_ B l
A|lYYYYYY & o
| ! 21 o
! 'l 4.0m
D E
/ 4m 3m y, 3m L
A A+
Fig. 20.3 (a) Example 20.2
Solution:
Calculate fixed end moments by locking the joints A, B, C, D and E
F 2 X 42
Mag = 20 = 4.0 KN.m

M ga™ = —2.667 KN.m
F_
Mpgc =7.5kN.m

Mcg = -7.5kN.m

Meo =Mpg =Mcg =Mgc =0 (1)

The frame is restrained against sidesway. In the next step calculate stiffness and
distribution factors.

2E|l
Kga = 0.25El and Kgc =6 " 0.333El



El

3
Kep = —, = 0.1875El ;  Kce = 0.25E 2)
At joint B :
K=K +K +K
Z BA BC BD
= 0.7705ElI

DFga = 0.325 ; DFgc = 0.432

DFgp = 0.243 (3)
At joint C:

> K = 0.583E

DFcg = 0.571 ; DFcp = 0.429

In Fig. 20.3b, the complete procedure is shown on a working diagram. The
moment-distribution method is started from joint C . When joint C is unlocked, it
will rotate under the action of unbalanced moment of 7.5kN.m. Hence
the 7.5 kN.m is distributed among members CBand CE according to their
distribution factors. Now joint Cis balanced. To indicate that the joint Cis
balanced a horizontal line is drawn. This balancing moment in turn developed
moments +2.141 kN.m at BC and +1.61 kN.m at EC . Now unlock joint B . The joint
B is unbalanced and the unbalanced moment
is - (7.5+ 2141 - 2.67) =-6.971 kN.m . This moment is distributed among three
members meeting at B in proportion to their distribution factors. Also there is no
carry over to joint D from beam end moment BD as it was left unlocked. For
member BD , modified stiffness factor is used as the end D is hinged.

Example 3

Analyse the rigid frame shown in Fig. 20.4a by moment-distribution method.
Draw bending moment diagram for the rigid frame. The flexural rigidities of the
members are shown in the figure.
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Fig. 20.4a Example 20.3
Solution:
Assuming that the joints are locked, calculate fixed end moments.
Ma =1.333 KN.m Mgy =-1.333 kN.m
Mgch = 4.444 KN.m: Mcg" =-2.222 kN.m
Meo =6.667 kN.m ;Mpc = -6.667 kN.m
Mge =0.0 kN.m ;Mg =00 kN.m
Mce =5.0 KN.m ;M gc =-5.0 kN.m (1)

The frame is restrained against sidesway. Calculate stiffness and distribution
factors.

K
Kga = 0.5El ; BC = 0.333El ; Kge = 0.333El
K 3 2E|
Kcg = 0.333El ; co = 0.5El ; Kcg ==—— = 0.375ElI
4 4
Kpc = 0.5El ; Kpg = 0.5El (2)

Joint B :
ZK = 0.5El +0.333El +0.333El =1.166EI



DFga = 0.428 DFgc =0.286
DFgg = 0.286
Joint C:
ZK = 0.333El +0.5El +0.375E1 =1.208El
DFcg = 0.276 ; DFcp = 0.414
DFcr = 0.31
Joint D :
> K =1.0El
DFpc =050 ; DFpg = 0.50 3)
== 2497 am

2157 R
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Fig. 20.4b Moment distribution computation




The complete moment-distribution method is shown in Fig. 20.4b. The moment-
distribution is stopped after three cycles. The moment-distribution is started by
releasing and balancing joint D . This is repeated for joints C and B respectively
in that order. After balancing joint F , it is left unlocked throughout as it is a
hinged joint. After balancing each joint a horizontal line is drawn to indicate that
joint has been balanced and locked. When moment-distribution method is finally
stopped all joints except fixed joints will be left unlocked.



Introduction

In the previous lesson, rigid frames restrained against sidesway are analyzed
using moment-distribution method. It has been pointed in lesson 17, that frames
which are unsymmetrical or frames which are loaded unsymmetrically usually get
displaced either to the right or to the left. In other words, in such frames apart
from evaluating joint rotations, one also needs to evaluate joint translations
(sidesway). For example in frame shown in Fig 21.1, the loading is symmetrical
but the geometry of frame is unsymmetrical and hence sidesway needs to be
considered in the analysis. The number of unknowns is this case are: joint
rotations 6g and 8¢ and member rotationy . Joint B and C get translated by the
same amount as axial deformations are not considered and hence only one
independent member rotation need to be considered. The procedure to analyze
rigid frames undergoing lateral displacement using moment-distribution method
is explained in section 21.2 using an example.
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Fig 21.1 Rigid frame



Procedure

A special procedure is required to analyze frames with sidesway using moment-
distribution method. In the first step, identify the number of independent rotations
() in the structure. The procedure to calculate independent rotations is
explained in lesson 22. For analyzing frames with sidesway, the method of
superposition is used. The structure shown in Fig. 21.2a is expressed as the
sum of two systems: Fig. 21.2b and Fig. 21.2c. The systems shown in figures
21.2b and 21.2c are analyzed separately and superposed to obtain the final
answer. In system 21.2b, sidesway is prevented by artificial support at C . Apply
all the external loads on frame shown in Fig. 21.2b. Since for the frame,
sidesway is prevented, moment-distribution method as discussed in the previous
lesson is applied and beam end moments are calculated.
LetM ag ,Mpa ,Mpc ,Mcg,Mcp and Mpc  be the balanced moments obtained by
distributing fixed end moments due to applied loads while allowing only joint
rotations (6g and 6¢ ) and preventing sidesway.
Now, calculate reactions H a1 and H p; (ref. Fig 21.3a).they are ,

B ‘ B¢ 4 ‘ CR g A
o vvvtél+v+vv_c DS EN AR LA RS E Akl i S
a
P
~ ' >
El »
= o +
El
HA, HA. s
y (a) EENEE (b) rrirr—— o
A A A
i X o R
) D D

Fig 21.2 Frame with sidesway



again,
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Fig.21.3a Free body diagram

H M +M  Pa

Al = hy + hy
H M(.:D +M DC
DI = hy

R=P-(Hat+Hp1)

(21.1)

(21.2)
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Fig.21.3b Free body diagram of frame

In Fig 21.2c apply a horizontal force F in the opposite direction of R . Now k F =R
, then the superposition of beam end moments of system (b) and k times

(c) gives the results for the original structure. However, there is no way one could
analyze the frame for horizontal force F , by moment-distribution method as sway
comes in to picture. Instead of applying F , apply arbitrary known displacement /
sidesway ' as shown in the figure. Calculate the fixed end beam moments in the
column AB and CD for the imposed horizontal displacement. Since joint

displacement is known beforehand, one could use moment-distribution method to

analyse this frame. In this case, member rotations  arerelated to joint

translation which is known. Let MAB",MBA”,MBC",MCB",MCD" and M DC" are the
balanced moment obtained by distributing the fixed end moments due to

assumed sidesway ' at joints B and C . Now, from statics calculate horizontal

force F due to arbitrary sidesway ' .



A2 = h2
M* +M
H o o (21.3)
D2 = h]_
F= (H A2+ H DZ) (214)

In Fig 21.2, by method of superposition

kF=R ork=R/F
Substituting the values of R and F from equations (21.2) and (21.4),

P-(Ha+Hp1)

(21.5)
k= (Ha2+Hp2)
Now substituting the values of H o1 , H o2, Hpzand H p, in 21.5,

M’ AB+|\/|'BA _Pa M'cp +M 'pc
Pz M, vh, P 21.6
k=" M" M™ (21.6)

AB + BA ."cD™ DC
hy hy

Hence, beam end moment in the original structure is obtained as,
M =M +kM
original system(b) system(c)

If there is more than one independent member rotation, then the above
procedure needs to be modified and is discussed in the next lesson.



Example 1
Analyse the rigid frame shown in Fig 21.4a. Assume EIl to be constant for all

members. Also sketch elastic curve.

20kN

10kN g v c
;r El
El
3m
l e
Zm Zm

Fig. 21.4a Rigid frame of Example 21.1

Solution
In the given problem, joint C can also rotate and also translate by an unknown

amount . This problem has to be solved in two steps. In the first step, evaluate
the beam-end moment by preventing the sidesway.

In the second step calculate beam end moments by moment-distribution method
for known translation (see Fig 21.4b). By appropriately superposing the two

results, the beam end moment of the original structure is obtained.

a) Calculate stiffness and distribution factors

Kga = 0.333El ; Kgc =0.25El;

Keg = 0.25El ; Kep = 0.333El

Joint B : ) K =0.583El

DFga =0.571; DFgc = 0.429

Joint C: D K =0.583El



DFcg =0.429 ; DFcp =0.571. Q)
b) Calculate fixed end moment due to applied loading.
F_n - F_
Mas =0; Mgy =0 KkN.m

Mpc =+10kN.m: M =-10 kN.m

F F
MCD =0 kN.m ; M oc =0 kN.m . (2)
20kN 20kN
| oA
* 10kN C. =8 adfs TR
10kN v ' - - y J—» ——————————1 -3
B B R .
& + K ’
() (it) 2 (iii)
Hp H_n | 4 H,\_ ) Hlu
o rrbee v % rrbrr &~ by &
A D A D A

Fig. 21.4b Frame with side - sway

Now the frame is prevented from sidesway by providing a support at C as shown
in Fig 21.4b (ii). The moment-distribution for this frame is shown in Fig 21.4c. Let

M'ag,M'Ba, M'cpand M'pc be the balanced end moments. Now calculate

horizontal reactions at A and D from equations of statics.

M'ag+M'
H oy = ae . BA
= -3.635 + 7.268
3
= -3.635 KN () .
3.636 —17.269
Hpt = —————— =3.635kN(«).

3



R =10 - (-3.635 + 3.635) =—10 kN(—) 3)

| 0.429 | | 0.429 |
| +10.0 -10.0
[o.571 | -4.29 -2.145 | 0.571 ]
5.210
0.0 +5.71 ?:935
ac +2.605 -6.935 :
1.118 p
-5.71 *0(;52‘? +6.935
-1.487 7.197 +0.319
+0.120 7.254
St -0.052 -0.026 ;'zf;
-0.068 +0.011 !
7.265 e
~7.285 ’0-086 S -
.0.003
-0.003 .
7.269 0.0
+3.468
-7.268 L2688 +0.10
———— +0.008
0.0
.2.855 mirr +3.636
-0.744 —
.0.035
-0.001

-3.635

Fig. 21.4c Moment distribution with sidesway prevented

d) Moment-distribution for arbitrary known sidesway

Since 'is arbitrary, Choose any convenient value. Let ‘= % Now calculate

fixed end beam moments for this arbitrary sidesway.

MABF=_ 6E|l,U =_6E| X(— 150 ):100 kN.m
L 3 3El

Mgy =100 kN.m

MCDF =M DCF = +100 KN.m (4)



| 0.429 |

0.00 0.00
: -42.80
0.571 aqa8 -
T -42.90
+100.00 - i
-44.85 55,45 Piriyd
—_— +3.65,4
#5515 1. TES RIS
i it -52.521
" - -0.776
_ -53.086 +0.333
+53.088 +0.167 ’
-0.095 -0.072
P R -52.974
_ -52.,991 —
Frrrra
100.00
- 22,425
- 1.032
- 0.048
+76.495

| 0.428 !

| 0.571 |

+100.00
= 57.10

+ 42.90
g.62

52.52
+ D45

52.97

+100.00

- 2B.55

= +  4.811

+ 0.222

+ TE.483

Fig. 21.4d Moment distribution for sidesway

The moment-distribution for this case is shown in Fig 24.4d. Now calculate

horizontal reactions H a» and H p, .

H 52.98 + 76.48

= 3 = 43.15 kN(«)
H 52.97 + 76.49
2= " 3 =43.15kN(«)

F = -86.30 kN(—)



Let k be a factor by which the solution of case (iii ) needs to be multiplied. Now
actual moments in the frame is obtained by superposing the solution ( ii ) on the
solution obtained by multiplying case (iii ) by k . Thus kF cancel out the holding

force R such that final result is for the frame without holding force.
Thus,kF=R.

__~10
-86.13

=0.1161 (5)

Now the actual end moments in the frame are,

Mag =M 'ag +k M "ap

M ag = - 3.635 + 0.1161( + 76.48) = +5.244 kN.m
M ga = —7.268 + 0.1161( +52.98) = =1.117 kN.m
M gc = +7.268 + 0.1161( - 52.98) = +1.117 KN.m
Mcg = — 7.269 + 0.1161( -52.97) = -13.419 kN.m
Mcp = + 7.268 + 0.1161( +52.97) = +13.418 kN.m
M pc = +3.636 + 0.1161( +76.49) = +12.517 kN.m

The actual sway is computed as,
150
=k'=0.1161x —F|

17 415
=—Er

The joint rotations can be calculated using slope-deflection equations.

Mg =M g +2E1[26, +65 —3w ag ] where g ag = -
L L

MBA:MBAF"'@[ZG B +6a —3y AB]
L



In the above equation, except 65 and 6g all other quantities are known. Solving
for 65 and 65,
9y =255

El

6p=0;

The elastic curve is shown in Fig. 21.4e.

. 17.415
——
8 1
T

C '
T~ Cc
.
g, --9-604
El e
El
A
D
T wrrr

Fig.21.4e Elastic curve



Example 2
Analyse the rigid frame shown in Fig. 21.5a by moment-distribution method. The

moment of inertia of all the members is shown in the figure. Neglect axial

deformations.
B [
I
21 [ ‘.E,
12kN J E
D
=B
le 4m N
[ !
Fig. 21.5a Example 21.2
Solution:

In this frame joint rotations B and C and translation of joint B and C need to be

evaluated.

a) Calculate stiffness and distribution factors.

K
% =0333El;  Kpgc = 0.25El
K
ce = 0,25EI ; Kep = 0.333El
At joint B :
> K = 0.583E
DFga= 0571 ; DFgc = 0.429
At joint C :
> K = 0.583El

Version 2 CE IIT, Kharagpur



DFcg =0.429 ; DFcp = 0571

b) Calculate fixed end moments due to applied loading.

AB 62 BA
MBCFZO kN.m ; MCBFZO kN.m
MCDF =0 kN.m ; M DCF =0 kN.m

c) Prevent sidesway by providing artificial support at C . Carry out moment-
distribution ( i.e. Case A in Fig. 21.5b). The moment-distribution for this case is

shown in Fig. 21.5c.

R A A
s c @ SR el e
B c
’k
B
| ] . -
12kN D = 8 D D
>l < s  — o .
12kN | e Hos
A A
~ A sy ¢— H.. ~v < H

Fig. 21.5 b Frame with sidesway



| 0.a29 | | 0.429 |
0.00 0.00 -
____= +3.861 -1.109 _ o
0.00
-9.00 3.861 -1.103 -1.103
+5.139 - 0.414 -0.051
+0.178 1.103
-3.861 -1.154 -0.051
+0.236 + 3.625 -
. - 0.019 -1.154
-3.625 + 0.008 B
0.011
. +3.614 -
-0.552
-0.026
-0.578
+9.00
. +2.87
+0.118
+0.006
+11.694

Fig. 21.5c Moment distribution with sidesway prevented
Now calculate horizontal reaction at A and D from equations of statics.
Ha= 11.694 -3.614+6 = 7.347 kN (<)
6

Hp1= - 1.154-0578 = -0.577 kN (—)
3

R=12-(7.347 - 0577) = -5.23 kN (—)

d) Moment-distribution for arbitrary sidesway '(case B, Fig. 21.5c)

Calculate fixed end moments for the arbitrary sidesway of ' =150
El
: 150 :
Mg =-6EQI)=12E1 (- )=+50 kN.m ; Mga =+50 kN.m ;
L 6 6EI



Moo= -8By = ~BEBL(-150) - 1100 kNm ; Mpch = +100 kN.m ;
L 3 3El

The moment-distribution for this case is shown in Fig. 21.5d. Using equations of

static equilibrium, calculate reactions H a» and H p; .

| 0.429 |0.429 |
E" 0.0 0.0 |
| -21.45 -10.725
+50.00 21.45 -38.299 100.00
- 28.55 .19.15 -49.024 - 50.976
21.45 + 8,215 + 4.108 +49.024
10.935 .32.385 - 1.762 - 2.346
+32365 . 0.884 46.678 46.678
+ 0.503 +0.378 + 0.189 - 0.108
-32.BG68 - 0.081 46.57
32-668 & 0.041 rrer _
+ 0.025 +0.016 -46.57
+32.911 +100.00
-32.911
320 - 25.466
1173
0.054
50.00 ————
-14.275 13,285
+5.468 |
+ 0.252
+ 0.012
41.457

Fig. 21.5d Moment Distribution for arbitrary known sidesway

H - 32.911; 4157 15 305 kN ()
b _ 4657 +73.285

D2

=39.952 kN (<)

F =-(12.395 + 39.952) = =52.347 kN (—)
e) Final results

Now, the shear condition for the frame is (vide Fig. 21.5b)



(Har+Hpr)+k(Ha2+Hpy)=12
(7.344 ~0.577) + k(12.395 + 39.952)
=12k =0.129

Now the actual end moments in the frame are,

Mag =M 'ag +tk M “ap

M ag = 11.694 + 0.129( +41.457) = +17.039 kN.m
M ga = -3.614 + 0.129( + 32.911) = 0.629 kN.m

M pe = 3.614 + 0.129( -32.911) = =0.629 kN.m
Mcg = —1.154 + 0.129( — 46.457) = -4.853 kKN.m
Mcp = —1.154 + 0.129( +46.457) = +4.853 kN.m
M pe = ~0.578 + 0.129( + 73.285) = +8.876 kN.m

The actual sway

150
=k '=0.129 x— E|

19 .35
= F

The joint rotations can be calculated using slope-deflection equations.

MAB— MABF = +&[26A +GB —Sq] ]

L
or
L F 12Ely L = 12Ely
[29A+GB ]: Y -Mpg * = Mag— Ma- "
4E| L 4E| L
L 12El L 12El
[ZGB +9A ]:_MBA 7WIBAF + "U = MBA—MBA—F w
4E| L 4E| L

M ag = +17.039 kN.m



Mga =0.629 KkN.m

(M )= 9 + 0.129(50) =15.45 kN.m

(Mg )= 9 + 0.129(50) = -2.55 kN.m

. 1 .
change in near end + - g in far end

2
O, =
" 3]

(17.039 - 1545) + = L oeso 25,

_ 2
3E1/6

o =4.769
5 El

Example 3
Analyse the rigid frame shown in Fig. 21.6a. The moment of inertia of all the

members are shown in the figure.

10kN
S5kN B l C
T —"l’ 2 E 'l.
[le—1m —sle—1m —»{\

Fia.21.6a Exambple 21.3



Solution:
a) Calculate stiffness and distribution factors

K =261
% 51=0392El;  Kgc =050l
Kcs = 0.50EI ; Kep = 0.392EI
At joint B :
> K = 0.892EI
DFga = 0.439 ; DFgc = 0.561
At joint C:
> K = 0.892E
DFcg = 0561 ; DFcp = 0.439 (1)

b) Calculate fixed end moments due to applied loading.

MABF:MBAF:MCDF:MDCF:0 kN.m
Mg =250 KN.m

Mcg = —2.50 kN.m )

c) Prevent sidesway by providing artificial support at C . Carry out moment-

distribution for this case as shown in Fig. 21.6b.



) . -

Fig.21.6b Rotation of
Columns and beams

Now calculate reactions from free body diagram shown in Fig. 21.5d.

561 ——.561

+ 25 -2.5

+ 0.702 +1.403
-1.796
1.406 - 1.097
0.252 - 0.898
-0.141 +0.504
1.517 1.491
0.02 0.071
-0.011 - 0.040
+1.526 -1.522
0.0 0.0
<0.703 +0.549
0.056 +0.197
-0.005 +0.016
0.764 +0.762

Fig. 21.6 © Moment distribution for applied loading



10kN

e n | e m
3N )
1.526 ' 1.522
H aq
/ H, \ Ha‘
/ \
\

\\
0.764 /
Y oy «— H _=-1456 777> +—H, =1.456
YA
V.

T 0.762
Vv

Fig. 21.6 ( d ) Free - body diagram

Column AB

dPMA=0=5Ha + 1526 + 0764 + V; = 0

5Ha +V1=-2.29 (3)
Column CD

ZMD=0$5HD1—1.522—0.762—V2:0

S5Hpi1 -V, =2.284 4)
Beam BC

YMc=0= 2V +1522-152%6-10 x 1 =0
V1 =5.002 kN (1)
V, =4.998 kN (1) (5)
Thus from (3) H =_1458 kN (—)
Al

from (4) HDl =1.456 kN (<) (6)



H

ZFX =0

M+Hp+R-5=0
(7)

R=+5.002 kN ()

d) Moment-distribution for arbitrary sidesway .

Calculate fixed end beam moments for arbitrary sidesway of

1275
=l

The member rotations for this arbitrary sidesway is shown in Fig. 21.6e.

- 6.565
+0.005
- 0.008
- 6.562

+0.053
- 0.094
-6.521

+0.666
+0.463
<7.85

+0.261
+0.021
+0.001

+6.283

+0.362
-0.07

40.006
+ 6.299

Fig. 21.6 (e) Moment distribution of arbitrary known sidesway



Y e __ - ' 51

AB = - - 1

e Lo cos a 5
2 2 -4
5 -
w . .
as=— (clockwise) ;wcp=— '( clockwise)
5 5
liu 2 lt 1 .
BC = , = ana = _( counterclockwise)
2 2 5
r 6 El 6E(21) 12.75
Mag = ——Bag = — - =+6.0 KN.m
L
AB 51 5EI
Mg = +6.0 kN.m
. 6 El 6E (1) 12.75
Mg =-—LSype = - =-7.65 KkN.m
L
BC 2 5EI
Mcg = -7.65 kN.m
6 El 6E(21) 12.75
Mep = - —=Lep = - - = +6.0 kN.m
L
cD 51 5EI

Mpe =+6.0 kN.m

The moment-distribution for the arbitrary sway is shown in Fig. 21.6f. Now

reactions can be calculated from statics.



A2 4 e —
. T |#6.566
‘l 6.565 E l v.
= v \_’HD
\
«— H, «—H,,
” 4 6.286 .
6.263 |y T V.
Fig. 21.6 (f) Free - body diagram
Column AB
PMA=0=5Hp,,- 6283 - 6567 +V; =0
5Ha +V;=12.85 (3)
Column CD
dYMp=0=5Hp,-6567-6283-V, =0
5H D1~ V2 =12.85 (4)
Beam BC

DM =0= 2V, + 6567 + 6567 = 0
V;=-6567 kN (1);V, = +6567 kN (1) 5)

Thus from 3 H,, =+3.883 kN ()

from 4 Hp, = 3.883 kN () (6)



e) Final results

F=7.766 kN (<)

kF=R

k= 15002 =0644
7.766

Now the actual end moments in the frame are,

Mag =M 'ag +k M "ap

M a5 = ~0.764 + 0.644( +6.283) = +3.282  kN.m
M ga = — 1.526 + 0.644( + 6.567) = 2.703 kN.m

M gc = 1.526 + 0.644( —6.567) = -2.703 kN.m
Mcg = —1.522 + 0.644( — 6.567) = ——5.751 kN.m
Mcp = 1.522 + 0.644(6.567) =5.751 kN.m

M pc =0.762 + 0.644(6.283) = 4.808 kN.m

(7)



UNIT- V

KANIS METHOD

This method may be considered as a further simplification of moment distribution method wherein
the problems involving sway were attempted in a tabular form thrice (for double story frames) and two
shear co-efficients had to be determined which when inserted in end moments gave us the final end
moments. All this effort can be cut short very considerably by using this method.

— Frame analysis is carried out by solving the slope — deflection equations by successive
approximations. Useful in case of side sway as well.
—> Operation is simple, as it is carried out in a specific direction. If some error is

committed, it will be eliminated in subsequent cycles if the restraining moments and
distribution factors have been determined correctly. Please note that the method does not give
realistic results in cases of columns of unequal heights within a storey and for pin ended columns both of
these cases are in fact extremely rare even in actual practice. Even codes suggest that RC columns framing
into footings or members above may be considered more or less as fixed for analysis and design purposes.

Case 1. No side sway and therefore no translation of joints derivation.
Consider a typical member AB loaded as shown below:

Tangent at B

4

Mab lFH Py Mba
8b
FA Ba B
Tangent at A A Elastic Curve
[ <L :

A GENERAL BEAM ELEMENT UNDER END MOMENTS AND LOADS

General Slope deflection equations are.

Mah = MFab +‘2Lﬂ(—29n—l)h) — (1)
2El
Mba = MFba +“‘|“_“(—Ha—Zth - (2)
equation (1) can be re-written as
Mab = MFab + 2 M'ab + M'ba —»(3) where MFab = fixed end moment

at A due to applied loads.
El
and M'ab = rotation contribution of near end A of member AB = S (20a)

=—'2Ell—0;1 =—2Ek, Ba — (4) where [h:ll']']
M'ba = rotation contribution of for end B of member AB.
2 El
So M’hn:-ﬂ: — 2Ek, b —(5)

L



Now consider a generalized joint A in a frame where members AB, AC, AD......... meet. It carries a
moment M.

i
kq
Vil \
e
A ko
k3
D
For equilibrium of joint A, ¥XMa =0
or Mab + Mac + Mad + Mae.................. =0  Putting these end moments in form of eqn. (3)

or YMF (ab, ac, ad) + 2 XM’ (ab, ac, ad ) + XM’ (ba, ca, da) =0
Let >MF (ab, ac, ad) = MFa (net FEM at A)

So MFa +2 XM’ (ab, ac, ad) + XM’ (ba, ca,da)=0  — (6)
From (6), XM’ (ab, ac, ad) = —% [(MFa + XM’ (ba, ca, da)] — (7)

From (4), XM’ (ab, ac, ad) = — 2Ek, 0a — 2 Ek, 0a — 2 Ek; 0a + ...............
=—2E9a(k|+k2+k3)
=—2EBa (Zk), ( sum of the member stiffnesses framing in at joint A)

~ Y M’ (ab, ac, ad)

2E (3K) (8

or fa =
From (4), M'ab = — 2 Ek, 0a. Put 0a from (8), we have

M‘Lﬁﬁ.@l} S 5 Gl

M'ab =-2Ek; [— 2E (3K) =%k

From (7), Put XM’ (ab, ac, ad)

k [—%(MFa + XM’ (ba, ca, da)):|

P -
So Mab—Zk



e il "
or Mab__ZZk [ MFa + XM’ (ba, ca, da)]

1k,
on similar lines M'ac = — EZ_i([ MFa + XM’ (ba, ca, da)]

1 k
/ T s, '
and Mad = 75k [ MFa + XM’ (ba, ca, da)]
/4 /4
rotation contribution of near sum of the rotations contributions of far
end of member ad. ends of members meeting at A.

Sum of rotation factors at near end of members ab, ac, ad is

1k 1k 1k l[k]+k2+k3+‘ ....... }
T2%k 2%k 2%k T2 Yk

1 ; 3 .
==7 [sum of rotation factors of different members meeting at a
C 1
joint is equal to — )

Therefore, if net fixed end moment at any joint along with sum of the far end contribution of
members meeting at that joint are known then near end moment contribution can be determined. If
far end contributions are approximate, near end contributions will also be approximate. When Far
end contributions are not known (as in the first cycle), they can be assumed to be zero.

6.1. RULES FOR CALCULATING ROTATION CONTRIBUTIONS :— Case-1: Without sides way.

Definition: “Restrained moment at a joint is the algebraic sum of FE.M’s of different members
meeting at that joint.”

1. Sum of the restrained moment of a joint and all rotation contributions of the far ends of
members meeting at that joint is multiplied by respective rotation factors to get the
required near end rotation contribution. For the first cycle when far end contributions
are not known, they may be taken as zero (Ist approximation).

2, By repeated application of this calculation procedure and proceeding from joint to joint
in an arbitrary sequence but in a specific direction, all rotation contributions are known.
The process is usually stopped when end moment values converge. This normally happens after
three or four cycles. But values after 2nd cycle may also be acceptable for academic.

6.2. Case 2:— With side sway (joint translations)

In this case in addition to rotation contribution, linear displacement contributions ( Sway
contributions ) of columns of a particular storey are calculated after every cycle as follows:



6.2.1. For the first cycle.

(A) > Linear Displacement Contribution ( LDC) of a column = Linear displacement factor (LDF) of a
particular column of a story multiplied by [storey moment + contributions at the ends of columns
of that story]

3
Linear displacement factor (LDF) for columns of a storey = — 3

3 k
Linear displacement factor of a column = — ;T

K Where k=stiffness of the column being

considered and 2k is the sum of stiffness of all
columns of that storey.

1
6.2.2. (B) »>  Storey moment = Storey shearxgof storey height.

6.2.3. (C)>  Storey shear: It may be considered as reaction of column at horizontal beam / slab
levels due to lateral loads by considering the columns of each sotrey as simply supported beams in
vertical direction. “If applied load gives + R value (according to sign conversion of slope
deflection method), storey shear is +ve or vice versa.”

Consider a general sway case.

A
k—4

- 7

6.3. SIGN CONVENSION ON MOMENTS:-  Counter-clockwise moments are positive and
clockwise rotations are positive.

For first cycle with side sway.

D) Near end contribution of various = respective rotation contribution factor x [Restrained moment +
members meeting at that joint. far end contributions]

Linear displacement contributions will be calculated after the end of each cycle for the columns only.

FOR 2ND AND SUBSEQUENT CYCLES.

(E) > Near end contributions of various = Respective rotation contribution factor x [Restrained
members meeting at a joint. moment + far end contributions + linear displacement
contribution of columns of different storeys meeting
at that joint].



6.4. Rules for the Calculation of final end moments (sidesway cases)
(F) For beams, End moment = FEM + 2 near end contribution + Far end contributions.

(G) For columns, End moment. = FEM + 2 near end contribution + Far end contribution +
linear displacement contribution of that column for the latest cycle.

6.5. APPLICATION OF ROTATION CONTRIBUTION METHOD (KANI’'S METHOD)
FOR THE ANALYSIS OF CONTINUOUS BEAMS

Example No.1: Analyze the following beam by rotation contribution method. EI is constant.

7k/ft Bk/ft 36K/
Wrwm
A
} N pa
B C D
7/ 7
16 . 24 . 13 N
EI = constt.

Note.  Analysis assumes continuous ends with some fixity. Therefore, in case of extreme hinged
supports in exterior spans, modify (reduce) the stiffness by 3/4 = (0.75).for a hinged end.

Step No. 1. Relative Stiffness.

1
Span 1 L L K K modified.
B 1 16 o 2 48 3 3
A Te
BC 1 24 x s 2 2
24
CD 1 12 11—2 4 x (3/4) 3

(exterior or discontinuous hinged end)
Step No.2. Fixed end moments.

wL? 3% 16°
Mfab = + o =+t 1 =+64 K-ft.
Mfba = — 64
42
i D
12
Mfch = — 288

Pa’b  +36x 6°x6
Mfed =+3Z =" 17 =+ 54

Mfdc = - 54



Step No.3. Draw Boxes, enter the values of FEMs near respective ends of exterior boxes and rotation
contribution factors appropriately (on the interior side).

restraining moment =
algebraic sum of FEM
meeting at that joint is extend

in inner box..
B C D
05(3) +288 288 +54 -54 [05(3)
234 .
2 M oo [448 557 ) o3 [+8364 1482 «035 o
© |-55.95 +60.95 2 49143 1871
57 +61.94 +92.9 -19.45
* = Distribution factors.
A C( Far end contribution) B D( Far end contributions)
FIRST CYCLE B &

Joint B: = 0.3 (+224 +0+0) =—-67.2 (Span BA)  Joint C: —0.2(— 234 — 44.8 + 0) = +55.76 (Span CB)
and -02(224+0+0)=-44.8(SpanBC)  and —0.3(— 234 - 44.8 + 0) = +83.64 (Span CD)

Joint D: —0.5(- 54 +83.64) = - 14.82 (Span DC)

2nd cycle:
A C ( Far end contributions) B D (far end contributions)
Vo \) \)
Joint B. — 0.3 (+224+0 +55.76) = - 83.92 Joint C: — 0.2 (- 234 — 55.95 — 14.82) = 60.95
— 0.2 (+224+0 +55.76) = — 55.85 —-0.3(-234-5595-14.82)=9143

JointD. — 0.5 (-54+91.43)=-18.715

3rd cycle: Singular to second cycle procedure. We stop usually after 3 cycles and the answers can be
further refined by having another couple of cycles. (Preferably go up to six cycles till difference in moment
value is 0.1 or less). The last line gives near and far end contribution.

Step No. 4. FINAL END MOMENTS
For beams.  End moment = FEM + 2near end cont. + Far end contribution.

Mab=+64+2x0-84.48=-2048 k- ft.
Mba= - 64 -2x84.48 +0=-23296 k- ft.
Mbc =+ 288-2x 57 + 61.94 = +235.9 k — ft.
Mcb=-288+2x61.94-57=-221.12
Mcd =+ 54 +2x92.9 - 19.45 =+ 220.35
Mdc =-54 -2 x 19.45 + 92.9 = zero

The beam has been analyzed and we can draw shear force and bending moment diagrams as usual.



6.6. Rotation Contribution Method: Application to frames without side sway.

Example No 2:

Analyze the following frame by Kanis method ( rotation Contribution Method )

Step No. 1

Step No.2.

9K
, l ) 1 kit
1 6 10 c
A3l 22\
/
2| 10
o /
D 12
Relative Stiffness.
I ’
Span 1 L L K K modified.
3
AB 3 16 16 % 240 45 45
2 3
BC 2 12 Ik 240 40 7 30) (Exterior hinged end)
2
BD 2 10 EXMO 48 48 .
2103
FEM’s
9x6x10°
Mfab == — =+21.1 K-t
9x10x6
Mfba = ———7— = 12.65
16
1 x12?
Mfbc = =" 12
Mfchb = - 12
Mfbd = Mfdb = 0 ( No load within span BD)



Step No. 3. Draw Boxes, enter values of FEM’s, rotation contribution factors etc.

B C
A +21.1 -12.65 B +12 -12
0+ +0.119 .o Y S L[+0.079 596 L |°
097 |0183—"-0122 5547 ,g30 (05
-1.03 " 069  +6.349
-0.195
* rot. cont. 4012 | 0
factor. 1.03
-1.10
FEM's
010
Ll 772
b

(rotation contribution factor)

Apply all relevant rules in three cycles. Final end moments may now be calculated.
For beams.  End moment = FEM + 2 x near end contribution. + Far end contribution
For Columns : End moment = FEM + 2 x near end contribution + Far end contribution + Linear
displacement contribution of that column. To be taken in sway cases only.
Mab =21.1 +2x0 -1.03 = + 20.07 K-t
Mba=-12.65-2x 1.03 +0=-14.71
Mbe = +12 -2 x 0.69 + 6.345 = 16.965
Mbd=0-2x1.1+0=-22
Mcb =-12 +2x 6.345-0.69 =0
Mdb =0+ 2x0-1.10=-1.10
Equilibrium checks are satisfied. End moment values are OK. Now SFD and BMD can be drawn as usual.
Example No. 3: Analyse the following frame by rotation Contribution Method.
SOLUTION:-
It can be seen that sway case is there.

, |16k,
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Step No. 1. Relative Stiffness.

I
Member. I L L Kl
1
AB 1 10 10 10 1
BC 4 20 k! 10 2
20"
|
CD | 10 10 % 10 1
Step No. 2. FEM’s
+16x5x15°
MfBC = 207 =+45
-16x5x 15
MfCB = 20° =-15
All other fixing moments are zero.
Step No.3 Draw Boxes, enter FEM’s and rotation Contribution factors etc. Apply three cycles.
B C
* | +45 <15 *
- -15
] -0333 1498 +9.08 | 0338
-18.93 +10.67
* -19.57 +10.47 *
-0.167 -0.167
0 +50 |9
-7.51
+5.35 LDGC
¥ LDC +5.25
' —_— +1.8825
" - +. 0.75 +3.105
w202 | | (13105 Pt
7 +3.41 LDE
Linear disp. | FEMs .
factors * = rotation factors.
L1
* 777

0 0 D
ITI7777
A Rotation factor
Rotation factor

See explanation of calculations on next page.

Note: After applying the first cycle as usual, calculate linear displacement contribution for columns of all
storeys. Repeat this calculation after every cycle.

Linear displacement contribution (LDC) of a column=Linear displacement factor [ story moment +
contribution of column ends of that storey)

Storey moment is zero because no horizontal load acts in column and there is no storey shear.

After 1st cycle: Linear Disp. Cont= —0.75[0+5.0-7.5+0+0] =+ 1.8825
—  For 2nd cycle onwards to calculate rotation contribution, apply following Rule:—
Rotation contribution = rotation contribution factor [restrained moment + far end contributions +
linear displacement contribution of columns. of different. storeys meeting at that joint.]



2nd cycle.

A C(Farends)

Voo
Joint B. —0.167 [+45+0+9.98 + 1.8825 ] =—-9.49 (Span BA)
and -0333 [ do ]=-18.93 (Span BC)
Joint C. -0333[-15-18.93+0+1.8825]=+10.67 (Span CB)
and -0.167 [ do ]=+5.35 (Span CD)
After 2nd cycle. Linear displacement contribution is equall to
storey moment.
\
=-075[0-949+0+535+0]=+3.105
After 3rd cycle.
After 3rd cycle , linear displacement. contribution of columns is equall to
storey moment.
\
=-0.75[0-9.80+525+0+0]=341
Calculate end moments after 3rd cycle.
For beams: End moment = FEM + 2 near end contribution. + Far end contribution.

For columns. End moment = FEM + 2 near end contribution + Far end contribution.
+ linear displacement. contribution of that column.

Applying these rules

Mab=0+0-9.80 + 3.41 =- 6.3875 k.ft.
Mba=+0-2x9.80+0+341=+16.19
Mbe =+45-2x 19.57 + 1047 =+ 16.33
Mcb=-15+2x10.47-19.57=13.63
Med=0+2x525+0+341=13.91
Mdc=0+2x0+525+3.41=8.66

By increasing number of cycles the accuracy is increased.



Example No 4 : Solve the following double story frame carrying gravity and lateral loads by rotation

contribution method.

2 KN/m
C D
)
21 21
2 KN/m
3KN/m B E
W)
21 21
AMm £3
5m

SOLUTION :-

3m 21

3m 21

If this is analyzed by slope-deflection or Moment distribution method, it becomes very lengthy and
laborious. This becomes easier if solved by rotation contribution method.

Step 1: F.E.Ms. .
Mfab = 31; 3 o 4225KN-m
Mfba = — 2.25 KN-m
Mfbe = + 2.25 KN-m

Mfcb = - 2.25 KN-m

2

2.5

12 =+417KN-m
Mfdc =—4.17 KN-m
Mfbe = +4.17 KN-m
Mfeb = —4.17 KN-m.
Mfde = Mfed =0
Mfef = Mffe = 0

Mfcd =

Step 2: RELATIVE STIFFNESS :-

I
Span [ L I
2
AB 2 3 3% 15
BC 2 3 %x 15

10



BE 1 3 %x 15 3
1

CD 1 ) '5‘>< 15 3
2

DF 2 3 3x 15 10
2

EF 2 3 3% 15 10

LINEAR DISPLACEMENT FACTOR = L.D.F. of a column of a
particular storey.

3K
LDF.=- 27K

Where K is the stiffness of that column & YK is the stiffness of columns of that storey. Assuming columns
of equal sizes in a story. ( EI same)

3 10

LDF, = -7 10+ 10)=—0.75 (For story No. 1)

LDF, = o s 0.75 F No. 2

DF, = -5x 10+10)="0 (For story No. 2)
Storey Shear :—

This is, in fact, reaction at the slab or beam level due to horizontal forces. If storey shear causes a
(—ve) value of R, it will be (—ve) & vice versa.

For determining storey shear the columns can be treated as simply supported vertical beams.

(D Storey shear =—9 KN ( For lower or ground story. At the slab level of ground story)
2 Storey shear =—4.5  ( For upper story ). At the slab level of upper story root)

Storey Moment ( S.M) :—
S.M. = Storey shear + h/3 where h is the height of that storey.
3
SM,=—9><§=—9 (lower story )
3
SM,=-45 x§=—4.5 ( Upper story )

Rotation Factors

The sum of rotation factors at a joint is — ¥2. The rotation factors are obtained by dividing the
value — 2 between different members meeting at a joint in proportion to their K values.



1k
pab==5 S

9

etc.

Yl

_ L
pac =7

Rotation Contributions:—

The rule for calculating rotation contribution is as follows.
Sum the restrained moments of a point and all rotation contribution of the far ends of the members
meeting at a joint. Multiply this sum by respective rotation factors to get the required rotation

contribution. For the first cycle far end contribution can be taken as zero.

Span K Rotation factor.
AB 10 0  (Being fixed end)
BC 10 —% (%):—0.217
BE 3 -0.5 (‘3‘) =-10.065
23
BA 10 -0.5 (%)=—0.217
CB 10 -0.385
CD 3 -0.115
DC 3 -0.115
DE 10 -0.385
ED 10 -0217
EB 3 -0.065
EF 10 -0217
FE 10 0 (Being fixed end)

Now draw boxes, enter FEMs values, rotation factors etc. As it is a two storeyed frame, calculations on a
single A4 size paper may not be possible. A reduced page showing calculation is annexed.



Restraining |1y og= FEM=+4.17 -417=FEM. W de-
¢ Moment 0115 RC. RC ong Y g
1.92 s RC.
= 0.49
Jich = -0.385 052 0.18 W de=-0.385
076 -0.11
-0.95 03
R.C.=Rotation Con- .09 045 RC. FEM.=0
tribution. 119 2 1.65
039 126 i 045
0,89 064 035
-1.74 | Linear Displacement Contribution 07 -1.00 LDC.
2585 | LpC. 150 | 27
Linear Dis- 318 | 27 A87 | 67 | pE
placement 365 | oo, 214 | g7 =075
factor(L.D.F) -3.99 234 : :
-0.75 -423 | 987 12.25
12.25 14.00
14.00 :gg 15.30
-6.50 | 15.3 4‘37 16.21
-6.30 | 16.21 T
6,00 o) -3.88 16.21
561 * -3.28
505 -2.33
424 -1
-2.46 0.55
-09
FEM.=+2.25 RC. FEM.=0
RC.
| RC. | FEM.=0
Wbe=-0217 Med=-0217
K be FEM.=-4.17
FEM.=+417  FEM-=-4 eb=
B 417 0,065 iy W E
aik RC.
o5 0.16
- 027 W ef=-0217
Wba=-0.217 prees 7%
127 -0.70
RC. FEM. =-225 RC. | FEM.=0
g -1.51 -0.97 "
e -168 -1.16 !
) LDC. 189 131 ‘11
42 233
505 |7 -1.95 141 ; L.D.C.
LDF= 195 323 | DL
-5.61 9.8 : 148
075 Lo . 388 7
a0 | 437 | %8 LDF
650 |12 459 | 1168 =075
13.87 493 | 129
14.53 13.87
1499 14,53
15.00 14.99
15.00
FEM.=0
| FEM.= 4225 ”*;”
A

Double - storey frame carrying gravity and lateral loads — Analysed by Rotation Contribution Method.



First Cycle :—

Near end contribution = Rotation factor of respective member (Restrained moment +
far end contributions).

Joit B = RF.(417)
C = RF(1.92-09)
D = RF(-417-0.12)
E = RF (-4.17+1.65)
After First Cycle :—

Linear Displacement Contribution :—= L.D.F.[Storey moment + Rotation contribution at the end
of columns of that storey].

LD.C=-0.75(-9-09+0.55)=7
LD.C,=-0.75(45-09-039+0.55+1.65)=2.7

For 2nd Cycle And Onwards :—

Near end contribution = R.F.[Restrained moment + Far end contribution + Linear displacement
contributions of columns of different storeys meeting at that joint]

Joint B= RF. (4.17+0.16-039+7+2.7)

C= " (1.92+0.49-296+2.7)

D= " (-4.17-025+055+2.7)

E= " (-4.17+045-0.89+27+7).
After 2nd Cycle :—-

LD.C=-075(-9-296-1.1)=98
LD.C,=-0.75(-45-2.96-0.83 - 1.1 + 0.45) =6.71
3rd Cycle :-

Joint B= RF.(417-033-0.83+9.8+6.71)
C= " (1.92+40.13-424+6.71)
D= " (-417-1.1-052+6.71)
E= " (-417-127-035+98+6.71)



After 3rd Cycle :-
LD.C; =-0.75(-9-4.24-233)=11.68

LD.C, =-0.75(-45-1.74-424-0.35-2.33) =9.87

4th Cycle :-

Joint B= RF. (4.17-0.70 - 1.74 + 11.68 + 9.87)

C= " (1.92-0.11-5.05+9.87)

D= " (-4.17-0.76-233+9.87)

E= " (=417-1-1.51+9.87+11.68).
After 4th Cycle -

LD.C; =-0.75(-9-5.05-3.23) = 12.96
LD.C, =-0.75(-4.5-5.05-2.55-1.00-3.23) = 12.25
5th Cycle :-

Joint B= RF. (4.17-0.97-2.55 +12.25 + 12.96)

C= " (1.92-03-5.61+12.25)
D= " (-4.17-095-323+12.25)
E= " (-417-1.5-1.68+12.25 + 12.96)
After 5th Cycle -
LD.C; =-0.75(-9-5.61-3.88)=13.87 (ground storey)

LD.C,=-0.75(-45-5.61-3.18-15-3.88)=14 (First Floor)

6th Cycle :-—

B RF. (4.17-1.16-3.18 + 14+ 13.87)
c " (192-0.05-6+14)

D = " (-417-3.88-1.09+14)

E " (-417-187-1.68 + 14 +13.87)

Joint



After 6th Cycle :—
LD.C;=-0.75(-9-6-4.37)=14.53
LD.C,=-0.75(-45-6-3.65-1.87-437)=153
7th Cycle :-

B RF. (4.17-1.31-3.65+15.3 + 14.53)
C " (1.92-0.56-6.30 + 15.3)

D " (-417-1.19-437+153)

E " (-417-189-2.14+153 + 14.53)

Joint

After 7th Cycle :-

LD.C;=-0.75(-9-6.30-4.69 ) = 14.99
LD.C,=-0.75(-45-63-399-2.14-4.69)=16.21
8th Cycle -

B = RF (417-141-399+16.21+14.99)
C = " (192-65-0.64+16.21)

D = " (-417-469-126+16.21)

E = " (-417-234-195+16.21 + 14.99)

Joint

After 8th Cycle :-
LD.C =-075(-9-65-493)=15

LD.C,=-0.75(-45-65-423-493-2.34)=16.21

FINAL END MOMENTS :-
(1) Beams or Slabs :—

=F.EM + 2 (near end contribution) + far end contribution of that particular
beam or slab.
(2) For Columns :—

=F.EM + 2 (near end contribution) + far end contribution of that particular
column + L.D.C. of that column. Applying these rules we get the following end
moments.



END MOMENTS :—

Mab = 225+2x 0-6.5+15 = +10.75 KN-m
Mba = —2.25-2(6.5)-1+15 = -0.25 "
Mbc = 2.25-2x6.5-4.23+16.21 = +1.23 i
Mbe = 4.17-2(1.95) - 1.48 = -1.21 "
Mcb = -225-2x4.23-6.5+16.21 = -1 L
Mcd = 4.17-2x1.26-0.7 = +0.95=+1 "
Mdc = —4.17-2x0.7-1.26 = -6.83 "
Mde = 0-2x234-493+16.21 = +6.60 4
Med = 0-2x4.93-234+16.21 = +4.01 "
Meb = —4.17-2x 1.48-1.95 = —9.08 KN-m
Mef = 0-2x4.93+15 = +5.14 "

Mfe = 0-2x0-493+15 +10.07 "

Now frame is statically determinate and contains all end moments. It can be designed now.

Space for notes:



36.1 Introduction

The building frames are the most common structural form, an analyst/engineer
encounters in practice. Usually the building frames are designed such that the
beam column joints are rigid. A typical example of building frame is the reinforced
concrete multistory frames. A two-bay, three-storey building plan and sectional
elevation are shown in Fig. 36.1. In principle this is a three dimensional frame.

However, analysis may be carried out by considering planar frame in two
perpendicular directions separately for both vertical and horizontal loads as
shown in Fig. 36.2 and finally superimposing moments appropriately. In the case
of building frames, the beam column joints are monolithic and can resist bending

moment, shear force and axial force. The frame has 12 joints (j ), 15 beam
members (b), and 9 reaction components (r).
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Fig.36.2 Idealized frame for analysis
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Fig.36.3 Building frame subjected to vertical loads



Analysis of Building Frames to Vertical Loads

Consider a building frame subjected to vertical loads as shown in Fig.36.3. Any
typical beam, in this building frame is subjected to axial force, bending moment
and shear force. Hence each beam is statically indeterminate to third degree and
hence 3 assumptions are required to reduce this beam to determinate beam.

Before we discuss the required three assumptions consider a simply supported
beam. In this case zero moment (or point of inflexion) occurs at the supports as
shown in Fig.36.4a. Next consider a fixed-fixed beam, subjected to vertical loads
as shown in Fig. 36.4b. In this case, the point of inflexion or point of zero moment
occurs at 0.21L from both ends of the support.

wkN/m
Inflection

point I\L\\/‘\i Ji % \L J/ i J/ \L

I< L »]

Deflected shape

Bending moment diagram

Fig.36. 4a Simply Supported beam



Inflection

wkN/m point
Y
| 0.21L 0.21L
— - — -—
—am L —
Deflected shape
.l =
il
24
1
wi? / .\\

12 .". .\‘_

Bending moment diagram

Fig.36. 4b Fixed - Fixed beam

Now consider a typical beam of a building frame as shown in Fig.36.4c. In this
case, the support provided by the columns is neither fixed nor simply supported.

For the purpose of approximate analysis the inflexion point or point of zero
0 +0.21L

moment is assumed to occurat—— = 0.1L from the supports. In reality

2
the point of zero moment varies depending on the actual rigidity provided by the
columns. Thus the beam is approximated for the analysis as shown in Fig.36.4d.
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For interior beams, the point of inflexion will be slightly more than 0.1L . An
experienced engineer will use his past experience to place the points of inflexion
appropriately. Now redundancy has reduced by two for each beam. The third
assumption is that axial force in the beams is zero. With these three assumptions
one could analyse this frame for vertical loads.

Example 1

Analyse the building frame shown in Fig. 36.5a for vertical loads using
approximate methods.

2kN/m
C Q (&L & 4 L] oL 14 ] 4]
£
<
5kN/m
B | g | E H
£
<
A D G
/7777 /7777 17777
6m 6m

Fig.36.5a
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Fig.36.5 b
Solution:

In this case the inflexion points are assumed to occur in the beam at 0.1L(= 0.6m)
from columns as shown in Fig. 36.5b. The calculation of beam moments is

shown in Fig. 36.5c.
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Fig.36.5d Axial force in columns



Now the beam -ve moment is divided equally between lower column and upper
column. It is observed that the middle column is not subjected to any moment, as
the moment from the right and the moment from the left column balance each

other. The —ve moment in the beam BE is 8.1kN.m . Hence this moment is
. 8.1
divided between column BC and BA . Hence, Mgc =M ga === 4.05kN.m . The

maximum + ve moment in beam BE is 14.4 kN.m . The columns do carry axial
loads. The axial compressive loads in the columns can be easily computed. This
is shown in Fig. 36.5d.

Analysis of Building Frames to lateral (horizontal) Loads

A building frame may be subjected to wind and earthquake loads during its life
time. Thus, the building frames must be designed to withstand lateral loads. A
two-storey two-bay multistory frame subjected to lateral loads is shown in Fig.
36.6. The actual deflected shape (as obtained by exact methods) of the frame is
also shown in the figure by dotted lines. The given frame is statically
indeterminate to degree 12.
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Fig.36.6 Shear in columns
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Fig.36.7a Two storey building frame
subjected to lateral load of Example 36.2
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Hence it is required to make 12 assumptions to reduce the frame in to a statically
determinate structure. From the deformed shape of the frame, it is observed that
inflexion point (point of zero moment) occur at mid height of each column and
mid point of each beam. This leads to 10 assumptions. Depending upon how the
remaining two assumptions are made, we have two different methods of
analysis: i) Portal method and ii) cantilever method. They will be discussed in the
subsequent sections.

Portal method

In this method following assumptions are made.
1) An inflexion point occurs at the mid height of each column.
2) An inflexion point occurs at the mid point of each girder.



3) The total horizontal shear at each storey is divided between the columns of
that storey such that the interior column carries twice the shear of exterior
column.

The last assumption is clear, if we assume that each bay is made up of a portal
thus the interior column is composed of two columns (Fig. 36.6). Thus the interior
column carries twice the shear of exterior column. This method is illustrated in
example 36.2.

Example 3

Analyse the frame shown in Fig. 36.7a and evaluate approximately the column
end moments, beam end moments and reactions.

Solution:

The problem is solved by equations of statics with the help of assumptions made
in the portal method. In this method we have hinges/inflexion points at mid height
of columns and beams. Taking the section through column hinges M .N, O we
get, (ref. Fig. 36.7b).

YFx =0 = V+2V+V=20

orV=5kN
Taking moment of all forces left of hinge R about R gives,

Vx15-M,x25=0
M, =3kN(})

Column and beam moments are calculates as,

Mcg =5x%x1.5=75kN.m; My =+7.5kN.m

Mcg =-7.5KkN.m

Taking moment of all forces left of hinge S about S gives,

5x1.5-0yx25=0

0, =3kN(1)
Ny =0

Taking a section through column hinges J, K, L we get, (ref. Fig. 36.7c).
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dFx =0 = V'+2V'+V'=60

orV'=15 kN



Taking moment of all forces about P gives (vide Fig. 36.7d)

dYM,=015x15+5x15+3x25-J,x25=0

3, =15k (1)
L, =15 k(1)
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Fig.36.7f
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Column and beam moments are calculated as, (ref. Fig. 36.7f)

M gc = 5%1.5 = 7.5 KN.m ; M ga =15%1.5 = 22.5 KN.m
Mge =—-30 kN.m

M ge =10 x1.5 =15 kN.m ; M gp = 30 x1.5 = 45 kN.m
Mgg=-30KN.m Mgy =-30kN.m

Mpy =5x15=75kN.m; M yg =15x1.5=225KkN.m
M pe =-30kN.m

Reactions at the base of the column are shown in Fig. 36.7g.

Cantilever method

The cantilever method is suitable if the frame is tall and slender. In the cantilever
method following assumptions are made.

1) An inflexion point occurs at the mid point of each girder.

2) An inflexion point occurs at mid height of each column.

3) In a storey, the intensity of axial stress in a column is proportional to its
horizontal distance from the center of gravity of all the columns in that storey.
Consider a cantilever beam acted by a horizontal load P as shown in Fig. 36.8. In
such a column the bending stress in the column cross section varies linearly from
its neutral axis. The last assumption in the cantilever method is based on this
fact. The method is illustrated in example 36.3.



Example 4

Estimate approximate column reactions, beam and column moments using
cantilever method of the frame shown in Fig. 36.8a. The columns are assumed to
have equal cross sectional areas.

Solution:
This problem is already solved by portal method. The center of gravity of all
column passes thEgh ceztr column.

XA \0 /A +5A +10A

X= = =5m (from left column)

D AA+A+A

Beam axis

r

Fig.36.8a Cantilever Column
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Taking a section through first storey hinges gives us the free body diagram as
shown in Fig. 36.8b. Now the column left of C.G. i.e. CB must be subjected to
tension and one on the right is subjected to compression.

From the third assumption,

M O
—y __ =y =M, =-0,

Taking moment about O of all forces gives,

20x1.5-Myx10=0

My:BkN(l); oy =3kN(1)

Taking moment about R of all forces left of R,



VmMXx15-3%x25=0

Vm =5 kN (<)

Taking moment of all forces right of S about S,

Vo x1.5-3x25=0 = Vg =5kN.
YFx =0 Vy +Vy +Vo -20 = 0

VN =10 kN.
Moments

Mcg = 5%1.5 = 7.5 KN.m
Mcg =-7.5 KN.m

M gg =15 kN.m
M ec = —7.5kN.m
Mg =-7.5kN.m
My =7.5kN.m

Mg =-75 KN.m

Tae a section through hinges J, K, L (ref. Fig. 36.8c). Since the center of gravity
passes through centre column the axial force in that column is zero.



3kN 3kN

L—SRN ﬂ‘:‘- —=5kN
owm ®onN @o
P Q
40kN
- @ @
J K L
. Vv . vl( . vrL
J, [
\
Fig.36.8c

Taking moment about hinge L , J y can be evaluated. Thus,

ZOXB+4O><1.5+3x10—Jy><10:0

3,=15kN(1) ; L, =15kN(%)

Taking moment of all forces left of P about P gives,

5x1.5 +3%x2.5 =15 x2.5 +Vj x1.5=0
V; =15 kN(«)
Similarly taking moment of all forces right of Q about Q gives,
5x1.5 +3%x2.5 -15%x2.5 +V| x1.5=0
V| =15kN (<)
YFx =0 Vy+Vg+V, -60=0

Vi =30 kN.



Moments

Mpgc=5x%x15=75 kN.m ; Mgy=15%x15=225 kN.m

M ge = -30 kN.m

Mege=10x15=15 KN.m ; Mpgp=30%15=45 kN.m
M

Mgg = -30 kN.m B = -30 kN.m

My =5%x15=75kN.m ; Mpc=15%x15=225 KkN.m

M e = -30 KN.m
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